Modern Physics Ques 73

  1. Radiation of wavelength $\lambda$, is incident on a photocell. The fastest emitted electron has speed $v$. If the wavelength is changed to $\frac{3 \lambda}{4}$, the speed of the fastest emitted electron will be

(2016 Main)

(a) $>v (\frac{4}{3})^{1 / 2}$

(b) $<v (\frac{4}{3})^{1 / 2}$

(c) $=v (\frac{4}{3})^{1 / 2}$

(d) $=v (\frac{3}{4})^{1 / 2}$

Show Answer

Answer:

Correct Answer: 73.(a)

Solution:

Formula:

Photoelectric Effect

  1. According to the law of conservation of energy, i.e. Energy of a photon $(h \nu)=$ Work function $(\phi)+$ Kinetic energy of the photoelectron $(\frac{1}{2} m v _{\max }^{2})$

According to Einstein’s photoelectric emission of light

i.e.

$ \begin{aligned} E & =(KE) _{\text {max }}+\phi \\ \frac{h c}{\lambda} & =(KE) _{\max }+\phi \end{aligned} $

If the wavelength of radiation is changed to $\frac{3 \lambda}{4}$, then

$ \Rightarrow \quad \frac{4}{3} \frac{h c}{\lambda}=(\frac{4}{3}(KE) _{\max }+\frac{\phi}{3})+\phi $

$(KE) _{\max }$ for fastest emitted electron $=\frac{1}{2} m v^{2}+\phi$

$\Rightarrow \quad \frac{1}{2} m v^{\prime 2}=\frac{4}{3} (\frac{1}{2} m v^{2})+\frac{\phi}{3} $

$\text { i.e. } \quad v^{\prime}>v (\frac{4}{3})^{1/2}$



Table of Contents