Optics Ques 135

  1. In a Young’s double slit experiment, the ratio of the slit’s width is $4: 1$. The ratio of the intensity of maxima to minima, close to the central fringe on the screen, will be

(a) $4: 1$

(b) $25: 9$

(c) $9: 1$

(d) $(\sqrt{3}+1)^{4}: 16$

(2019 Main, 10 April II)

Show Answer

Answer:

Correct Answer: 135.(c)

Solution:

Key Idea: Amplitude of light is directly proportional to area through which light is passing.

For same length of slits,

$ \text { amplitude } \propto(\text { width })^{1 / 2} $

Also,

$ \text { intensity } \propto(\text { amplitude })^{2} $

In YDSE, ratio of intensities of maxima and minima is given by

$ \frac{I _{\max }}{I _{\min }}=\frac{\left(\sqrt{I _1}+\sqrt{I _2}\right)^{2}}{\left(\sqrt{I _1}-\sqrt{I _2}\right)^{2}} $

where, $I _1$ and $I _2$ are the intensities obtained from two slits, respectively.

$ \Rightarrow \quad \frac{I _{\max }}{I _{\min }}=\frac{\left(a _1+a _2\right)^{2}}{\left(a _1-a _2\right)^{2}} $

where, $a _1$ and $a _2$ are light amplitudes from slits 1 and 2 , respectively.

$ \Rightarrow \quad \frac{I _{\max }}{I _{\min }}=\frac{\left(\sqrt{W _1}+\sqrt{W _2}\right)^{2}}{\left(\sqrt{W _1}-\sqrt{W _2}\right)^{2}} $

where, $W _1$ and $W _2$ are the widths of slits, respectively.

Here, $(\frac{W _1}{W _2})={(\frac{a _1}{a _2})}^{2}=\frac{4}{1} \Rightarrow \sqrt{\frac{W _1}{W _2}}=\frac{2}{1}$

So, we have

$ \begin{aligned} \frac{I _{\max }}{I _{\min }}=\left(\frac{\sqrt{W _1}+\sqrt{W _2}}{\sqrt{W _1}-\sqrt{W _2}}\right)^2 & = \left(\frac{\sqrt{\frac{W _1}{W _2}}+1}{\sqrt{\frac{W _1}{W _2}}-1}\right) \\ & =\left(\frac{2+1}{2-1}\right)^{2}=9: 1 \end{aligned} $



Table of Contents