Optics Ques 136

  1. In the adjacent diagram, $C P$ represents a wavefront and $A O$ and $B P$, the corresponding two rays. Find the condition of $\theta$ for constructive interference at $P$ between the ray $B P$ and reflected ray $O P$

$(2003,2 M)$

(a) $\cos \theta=\frac{3 \lambda}{2 d}$

(b) $\cos \theta=\frac{\lambda}{4 d}$

(c) $\sec \theta-\cos \theta=\frac{\lambda}{d}$

(d) $\sec \theta-\cos \theta=\frac{4 \lambda}{d}$

Show Answer

Answer:

Correct Answer: 136.(b)

Solution:

Formula:

Thin-Film Interference

  1. $P R=d$

$ \begin{array}{ll} \therefore & P O=d \sec \theta \\ \text { and } & C O=P O \cos 2 \theta=d \sec \theta \cos 2 \theta \end{array} $

path difference between the two rays is,

$ \Delta x=P O+O C=(d \sec \theta+d \sec \theta \cos 2 \theta) $

phase difference between the two rays is $\Delta \phi=\pi$ (one is reflected, while another is direct)

Therefore, condition for constructive interference should be

$ \Delta x=\frac{\lambda}{2}, \frac{3 \lambda}{2} \ldots $

or

$ d \sec \theta(1+\cos 2 \theta)=\frac{\lambda}{2} $

or

$ (\frac{d}{\cos \theta})\left(2 \cos ^{2} \theta\right)=\frac{\lambda}{2} \text { or } \cos \theta=\frac{\lambda}{4 d} $



Table of Contents