Optics Ques 158

  1. A slit of width $d$ is placed in front of a lens of focal length $0.5$ $ m$ and is illuminated normally with light of wavelength $5.89 \times 10^{-7} $ $m$. The first diffraction minima on either side of the central diffraction maximum are separated by $2 \times 10^{-3}$ $ m$. The width $d$ of the slit is …… $m$.

(1997, 1M)

Show Answer

Answer:

Correct Answer: 158.$(2.945 \times 10^{-4} )$

Solution:

Formula:

Diffraction

  1. Given

$ \begin{aligned} 2 y & =2 \times 10^{-3} m \\ y & =1 \times 10^{-3} m \end{aligned} $

First minima is obtained at

$ \begin{aligned} d \sin \theta & =\lambda \text { but } \sin \theta \approx \tan \theta=\frac{y}{f} \\ \therefore \quad d (\frac{y}{f}) & =\lambda \\ d & =\frac{\lambda f}{y}=\frac{5.89 \times 10^{-7} \times 0.5}{1 \times 10^{-3}} \\ & =2.945 \times 10^{-4} m \end{aligned} $



Table of Contents