Optics Ques 158
- A slit of width $d$ is placed in front of a lens of focal length $0.5$ $ m$ and is illuminated normally with light of wavelength $5.89 \times 10^{-7} $ $m$. The first diffraction minima on either side of the central diffraction maximum are separated by $2 \times 10^{-3}$ $ m$. The width $d$ of the slit is …… $m$.
(1997, 1M)
Show Answer
Answer:
Correct Answer: 158.$(2.945 \times 10^{-4} )$
Solution:
Formula:
- Given
$ \begin{aligned} 2 y & =2 \times 10^{-3} m \\ y & =1 \times 10^{-3} m \end{aligned} $
First minima is obtained at
$ \begin{aligned} d \sin \theta & =\lambda \text { but } \sin \theta \approx \tan \theta=\frac{y}{f} \\ \therefore \quad d (\frac{y}{f}) & =\lambda \\ d & =\frac{\lambda f}{y}=\frac{5.89 \times 10^{-7} \times 0.5}{1 \times 10^{-3}} \\ & =2.945 \times 10^{-4} m \end{aligned} $