Optics Ques 16

  1. Image of an object approaching a convex mirror of radius of curvature $20$ $ m$ along its optical axis is observed to move from $\frac{25}{3}$ $ m$ to $\frac{50}{7} $ $m$ in $30$ $ s$. What is the speed of the object in $km h^{-1}$?
Show Answer

Answer:

Correct Answer: 16.$(3)$

Solution:

Formula:

# Mirror Formula

  1. Using mirror formula twice,

$ \begin{aligned} & \frac{1}{+25 / 3}+\frac{1}{-u _1}=\frac{1}{+10} \\ & \text { or } \quad \frac{1}{u _1}=\frac{3}{25}-\frac{1}{10} \\ & \text { or } \quad u _1=50 m \text { and } \frac{1}{(+50 / 7)}+\frac{1}{-u _2}=\frac{1}{+10} \\ & \therefore \quad \frac{1}{u _2}=\frac{7}{50}-\frac{1}{10} \text { or } u _2=25 m \end{aligned} $

Speed of object $=\frac{u _1-u _2}{\text { time }}$

$ =\frac{25}{30}$ $ ms^{-1}$ $=3 $ $kmh^{-1} $

$\therefore \quad $ Answer is $ 3 $ .



Table of Contents