Optics Ques 211

  1. Figure shows an irregular block of material of refractive index $\sqrt{2}$. A ray of light strikes the face $A B$ as shown in the figure. After refraction it is incident on a spherical surface $C D$ of radius of curvature $0.4 $ $m$ and enters a medium of refractive index $1.514$ to meet $P Q$ at $E$. Find the distance $O E$ upto two places of decimal.

$(2004,2 M)$

Show Answer

Answer:

Correct Answer: 211.$( 6.06$ $ m)$

Solution:

Formula:

Refraction at Spherical Surfaces:

  1. Applying Snell’s law on face $A B$,

$ (1) \sin 45^{\circ} =(\sqrt{2}) \sin r$

$ \sin r =\frac{1}{2}$

$\text { or } \quad r =30^{\circ}$

i.e. ray becomes parallel to $A D$ inside the block.

Now applying,

$ \begin{gathered} \frac{\mu _2}{v}-\frac{\mu _1}{u}=\frac{\mu _2-\mu _1}{R} \text { on face } C D, \\ \frac{1.514}{O E}-\frac{\sqrt{2}}{\infty}=\frac{1.514-\sqrt{2}}{0.4} \end{gathered} $

Solving this equation, we get $O E=6.06$ $ m$



Table of Contents