Optics Ques 25

  1. A transparent cube of side $d$, made of a material of refractive index $\mu _2$, is immersed in a liquid of refractive index $\mu _1\left(\mu _1<\mu _2\right)$. A ray is incident on the face $A B$ at an angle $\theta$ (shown in the figure). Total internal reflection takes place at point $E$ on the face $B C$.

Then, $\theta$ must satisfy

(2019 Main, 12 April II)

(a) $\theta<\sin ^{-1} \frac{\mu _1}{\mu _2}$

(b) $\theta>\sin ^{-1} \sqrt{\frac{\mu _2^{2}}{\mu _1^{2}}-1}$

(c) $\theta<\sin ^{-1} \sqrt{\frac{\mu _2^{2}}{\mu _1^{2}}-1}$

(d) $\theta>\sin ^{-1} \frac{\mu _1}{\mu _2}$

Show Answer

Answer:

Correct Answer: 25.(c)

Solution:

Formula:

Critical Angle and Total Internal Reflection (T. I. R.)

  1. Key Idea: The critical angle is defined as the angle of incidence that provides an angle of refraction of $90^{\circ}$.

$ \text { So, } \quad \theta _c=\sin ^{-1} \frac{\mu _2}{\mu _1} $

For total internal reflection, angle of incidence $(i)$ at medium interface must be greater than critical angle $(C)$.

where,

$ \sin C=\frac{\mu _1}{\mu _2} $ $\quad$ …….(i)

Now, in given arrangement,

at point $D$,

$\frac{\sin i}{\sin r}=\frac{\mu _2}{\mu _1} \quad \text { (Snell’s law) } $

$\Rightarrow \quad \frac{\sin \theta}{\sin \left(90^{\circ}-C\right)}=\frac{\mu _2}{\mu _1} \Rightarrow \frac{\sin \theta}{\cos C}=\frac{\mu _2}{\mu _1} $

$\Rightarrow \quad \sin \theta=\frac{\mu _2}{\mu _1} \cdot \cos C=\frac{\mu _2}{\mu _1} \sqrt{1-\sin ^{2} C} \quad \text { [from Eq. (i)] } $

$= \quad \frac{\mu _2}{\mu _1} \sqrt{1-\frac{\mu _1^{2}}{\mu _2^{2}}}=\sqrt{\frac{\mu _2^{2}}{\mu _1^{2}}-1} \Rightarrow \theta=\sin ^{-1} \sqrt{(\frac{\mu _2^{2}}{\mu _1^{2}}-1)}$

For TIR at $E, i>C$

$ \Rightarrow \quad \theta<\sin ^{-1} \sqrt{(\frac{\mu _2^{2}}{\mu _1^{2}}-1)} $



Table of Contents