Optics Ques 61

  1. A bi-convex lens is formed with two thin plano-convex lenses as shown in the figure. Refractive index $n$ of the first lens is $1.5$ and that of the second lens is $1.2$. Both the curved surfaces are of the same radius of curvature $R=14$ $ cm$. For this bi-convex lens, for an object distance of $40 $ $cm$, the image distance will be

(2012)

(a) $-280.0$ $ cm$

(b) $40.0$ $ cm$

(c) $21.5$ $ cm$

(d) $13.3$ $ cm$

Show Answer

Answer:

Correct Answer: 61.(b)

Solution:

Formula:

Combination Of Lenses:

  1. Using the lens formula,

$ \begin{aligned} \frac{1}{v}-\frac{1}{u} & =\frac{1}{F}=\frac{1}{f _1}+\frac{1}{f _2} \text { or } \frac{1}{v}=\frac{1}{u}+\frac{1}{f _1}+\frac{1}{f _2} \\ & =\frac{1}{u}+\left(n _1-1\right) (\frac{1}{R _1}-\frac{1}{R _2})+\left(n _2-1\right) (\frac{1}{R _1^{\prime}}-\frac{1}{R _2^{\prime}}) \end{aligned} $

Substituting the values, we get

$ \frac{1}{v}=\frac{1}{-40}+(1.5-1) (\frac{1}{14}-\frac{1}{\infty})+(1.2-1)( \frac{1}{\infty}-\frac{1}{-14}) $

Solving this equations, we get

$ v=+40 $ $cm $



Table of Contents