Optics Ques 69

  1. A concave lens of glass, refractive index $1.5$ has both surfaces of same radius of curvature $R$. On immersion in a medium of refractive index $1.75$ , it will behave as a

$(1999,2 M)$

(a) convergent lens of focal length $3.5$ $ R$

(b) convergent lens of focal length $3.0$ $ R$

(c) divergent lens of focal length $3.5$ $ R$

(d) divergent lens of focal length $3.0$ $ R$

Show Answer

Answer:

Correct Answer: 69.(a)

Solution:

Formula:

Refraction at Spherical Thin Lens:

  1. $R _1=-R, R _2=+R, \mu _g=1.5$ and $\mu _m=1.75$

$ \therefore \quad \frac{1}{f}=(\frac{\mu _g}{\mu _m}-1 )\quad (\frac{1}{R _1}-\frac{1}{R _2}) $

Substituting the values, we have

$\frac{1}{f} =(\frac{1.5}{1.75}-1) \quad (\frac{1}{-R}-\frac{1}{R})=\frac{1}{3.5 R} $

$\therefore \quad f =+3.5$ $ R$

Therefore, in the medium it will behave like a convergent lens of focal length $3.5$ $R$.

It can be understood as, $\mu _m>\mu _g$, the lens will change its behaviour.



Table of Contents