Optics Ques 98

  1. A monochromatic light is incident at a certain angle on an equilateral triangular prism and suffers minimum deviation. If the refractive index of the material of the prism is $\sqrt{3}$, then the angle of incidence is

(2019 Main, 11 Jan II)

(a) $45^{\circ}$

(b) $90^{\circ}$

(c) $60^{\circ}$

(d) $30^{\circ}$

Show Answer

Answer:

Correct Answer: 98.(c)

Solution:

Formula:

Refraction Through Prism

  1. Given, refractive index of material of prism $n=\sqrt{3}$, prism angle $A=60^{\circ}$

Method 1

Using prism formula,

$ n =\frac{\sin (\frac{A+\delta}{2})}{\sin (\frac{A}{2})} $

$\Rightarrow \quad \sin (\frac{60+\delta}{2} )=\frac{\sqrt{3}}{2} $

$\Rightarrow \quad \sin (\frac{60+\delta}{2}) =\sin 60^{\circ} $

$\Rightarrow \quad (\frac{60+\delta}{2}) =60$

or angle of minimum deviation $\delta=60^{\circ}$

Incident angle, $\quad i=\frac{60+\delta}{2}=60^{\circ}$

Method 2

For minimum deviation, ray should pass symmetrically (i.e. parallel to the base of the equilateral prism)

$\Rightarrow$ From geometry of given figure, we have, $r=30^{\circ}$

Using Snell’s law,

$ \begin{aligned} n & =\frac{\sin i}{\sin r} \\ \sin i & =n \sin r=\sqrt{3} \sin 30^{\circ} \\ \Rightarrow \quad \sin i & =\frac{\sqrt{3}}{2} \text { or } i=60^{\circ} \end{aligned} $



Table of Contents