Properties Of Matter Ques 1

1 Water from a pipe is coming at a rate of 100 liters per minute. If the radius of the pipe is $5 \mathrm{~cm}$, the Reynolds number for the flow is of the order of (density of water $=1000 \mathrm{~kg} / \mathrm{m}^3$, coefficient of viscosity of water $=1 \mathrm{mPa} \mathrm{s}$ )

(2109 Main, 8 April I)

(a) $10^3$

(b) $10^4$

(c) $10^2$

(d) $10^6$

Show Answer

Answer:

Correct Answer: 1.( b )

Solution:

  1. Reynolds’ number for flow of a liquid is given by

$ R_e=\frac{\rho v D}{\eta} $

where, velocity of flow,

$ v=\frac{\text { volume flow rate }}{\text { area of flow }}=\frac{V / t}{A} $

So, $\quad R_e=\frac{\rho V D}{\eta A t}=\frac{\rho V 2 r}{\eta \times \pi r^2 \times t}=\frac{2 \rho V}{\eta \pi r t}$

Here, $\rho=$ density of water $=1000 \mathrm{kgm}^{-3}$

$ \frac{V}{t}=\frac{100 \times 10^{-3}}{60} \mathrm{~m}^3 \mathrm{~s}^{-1} $

where, $\eta=$ viscosity of water $=1 \times 10^{-3} \mathrm{~Pa}-\mathrm{s}$

and $\quad r=$ radius of pipe $=5 \times 10^{-2} \mathrm{~m}$

$ \begin{aligned} R_e & =\frac{2 \times 1000 \times 100 \times 10^{-3}}{1 \times 10^{-3} \times 60 \times 3.14 \times 5 \times 10^{-2}} \\ & =212.3 \times 10^2=20 \times 10^4 \end{aligned} $

So, order of Reynolds’ number is of $10^4$.