Properties Of Matter Ques 36
- A solid sphere of radius $R$ made of a material of bulk modulus $k$ is surrounded by a liquid in a cylindrical container. A massless piston of area $A$ floats on the surface of the liquid. When a mass $M$ is placed on the piston to compress the liquid the fractional change in the radius of the sphere, $\delta R / R$, is
$(1988,2 M)$
Show Answer
Answer:
Correct Answer: 36.$(\frac{M g}{3 A k})$
Solution:
Formula:
- $\Delta p=\frac{M g}{A} \Rightarrow\left|\frac{\Delta V}{V}\right|=\frac{\Delta p}{k}=\frac{M g}{A k}$
Now as,
$ V=\frac{4}{3} \pi R^{3} \text { or } V \propto R^{3} $
$\therefore \quad \frac{\Delta V}{V}=3\left(\frac{\Delta R}{R}\right)$
$ \text { or } \quad \frac{\Delta R}{R}=\frac{1}{3}\left(\frac{\Delta V}{V}\right) $ $\quad$ …….(i)
$\therefore$ From Eq. (i)
$ \frac{\Delta R}{R}=\frac{M g}{3 A k} $