Rotation Ques 10

10 A rigid massless rod of length $3 /$ has two masses attached at each end as shown in the figure. The rod is pivoted at point $P$ on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be

(2019 Main, 10 Jan II)

alt text

(a) $\frac{g}{13 l}$

(b) $\frac{g}{2 l}$

(c) $\frac{7 g}{3 l}$

(d) $\frac{g}{3 l}$

Show Answer

Answer:

Correct Answer: 10.( a )

Solution:

Torque $(\tau)$ about $\quad P=\mathbf{r}_1 \times \mathbf{F}_1+\mathbf{r}_2 \times \mathbf{F}_2$

$ \begin{array}{lc} \Rightarrow & \tau=l \times 5 M_{0 g} g \text { (outwards) }-2 l \times 2 M_0 g \\ \Rightarrow & \tau=5 M_0 g l-4 M_0 g l \\ \Rightarrow & \tau=M_0 g l \text { (outwards) } \\ \text { or } & \tau=M_0 g l \end{array} $

Now we know that, torque is also given by

$ \tau=I \alpha $

Here, $I=$ moment of inertia (w.r.t. point $P$ ) of rod and $\alpha=$ angular acceleration.

For point $P, I=\left(5 M_0\right) \times l^2+\left(2 M_0\right)(2 l)^2 \quad\left[\because I=M R^2\right]$

$ \Rightarrow \quad I=13 M_0 l^2 $

Putting value of $I$ from Eq. (iv) in Eq. (iii), we get

$ \tau=\left(13 M_0 l^2\right) \alpha $

From Eqs. (ii) and (v), we get

$ M_0 g l=13 M_0 l^2 \alpha \Rightarrow \alpha=\frac{g}{13 l} $