Rotation Ques 11

11 To mop-clean a floor, a cleaning machine presses a circular mop of radius $R$ vertically down with a total force $F$ and rotates it with a constant angular speed about its axis. If the force $F$ is distributed uniformly over the mop and if coefficient of friction between the mop and the floor is $\mu$, the torque applied by the machine on the mop is

(2019 Main, 10 Jan I)

(a) $\frac{2}{3} \mu F R$

(b) $\frac{\mu F R}{6}$

(c) $\frac{\mu F R}{3}$

(d) $\frac{\mu F R}{2}$

Show Answer

Answer:

Correct Answer: 11.( a )

Solution:

Torque applied to move this strip is

$d \tau=$ Force on strip

$\times$ Perpendicular distance from the axis

$\Rightarrow d \tau=$ Force per unit area $\times$ Area of strip $\times$ Perpendicular distance from the axis.

$ =\frac{\mu F}{\pi R^2} \cdot 2 \pi x d x \cdot x \Rightarrow d \tau=\frac{2 \mu F x^2}{R^2} \cdot d x $

So, total torque to be applied on the mop is

$ \begin{aligned} \tau & =\int_{x=0}^{x=R} d \tau=\int_0^R \frac{2 \mu F x^2}{R^2} \cdot d x \\ & =\frac{2 \mu F}{R^2} \times \frac{R^3}{3}=\frac{2}{3} \mu F R(\mathrm{~N}-\mathrm{m}) \end{aligned} $