Simple Harmonic Motion Ques 17

  1. The displacement of a damped harmonic oscillator is given by $x(t)=e^{-0.1 t} \cos (10 \pi t+\phi)$.

Here, $t$ is in seconds.

The time taken for its amplitude of vibration to drop to half of its initial value is close to

(2019 Main, 10 April I)

(a) $27$ $s$

(b) $13$ $s$

(c) $4$ $s$

(d) $7$ $s$

Show Answer

Answer:

Correct Answer: 17.(d)

Solution:

Formula:

Damped Oscillation

  1. Given, displacement is

$ x(t)=e^{-0.1 t} \cos (10 \pi t+\phi) $

Here, amplitude of the oscillator is

$ A=e^{-0.1 t} $ $\quad$ …….(i)

Let it takes $t$ seconds for amplitude to be dropped by half.

At

$ \begin{aligned} & t=0 \Rightarrow A=1 \\ & t=t \Rightarrow A^{\prime}=\frac{A}{2}=\frac{1}{2} \end{aligned} $

[from Eq. (i)]

So, Eq. (i) can be written as

$ \begin{aligned} e^{-0.1 t} & =\frac{1}{2} \\ \text { or } \quad e^{0.1 t} & =2 \end{aligned} $

$ \begin{aligned} & \text { or } \quad 0.1 t=\ln (2) \\ & \text { or } \quad t=\frac{1}{0.1} \ln (2)=10 \ln (2) \end{aligned} $

Now, $\ln (2)=0.693$

$ \begin{aligned} \therefore & \quad t =10 \times 0.693=6.93 s \\ \text { or } & \quad t \approx 7 s \end{aligned} $



Table of Contents