Simple Harmonic Motion Ques 24

  1. A simple harmonic motion is represented by $y=5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) cm$. The amplitude and time period of the motion are

(a) $10$ $cm,$ $\frac{3}{2}$ $s$

(b) $5$ $cm,$ $\frac{2}{3}$ $s$

(c) $5$ $cm,$ $\frac{3}{2}$ $s$

(d) $10$ $cm,$ $\frac{2}{3}$ $s$

(2019 Main, 12 Jan II)

Show Answer

Answer:

Correct Answer: 24.(d)

Solution:

Formula:

Superposition of SHM:

  1. Equation for $SHM$ is given as

$ \begin{aligned} y & =5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) \\ & =5 \times 2 (\frac{1}{2} \times \sin 3 \pi t+\frac{\sqrt{3}}{2} \cos 3 \pi t) \\ & =5 \times 2 (\cos \frac{\pi}{3} \cdot \sin 3 \pi t+\sin \frac{\pi}{3} \cdot 3 \pi t) \\ & =5 \times 2 \sin (3 \pi t+\frac{\pi}{3}) \\ & \quad[\text { using, } \sin (a+b)=\sin a \cos b+\cos a \sin b] \end{aligned} $

$ \text { or } \quad y=10 \sin (3 \pi t+\frac{\pi}{3}) $

Comparing this equation with the general equation of SHM, i.e.

$ y=A \sin (\frac{2 \pi t}{T}+\phi) $

We get, amplitude, $A=10 cm$

and $3 \pi=\frac{2 \pi}{T}$

or Time period, $T=\frac{2}{3} s$



Table of Contents