Simple Harmonic Motion Ques 24
- A simple harmonic motion is represented by $y=5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) cm$. The amplitude and time period of the motion are
(a) $10$ $cm,$ $\frac{3}{2}$ $s$
(b) $5$ $cm,$ $\frac{2}{3}$ $s$
(c) $5$ $cm,$ $\frac{3}{2}$ $s$
(d) $10$ $cm,$ $\frac{2}{3}$ $s$
(2019 Main, 12 Jan II)
Show Answer
Answer:
Correct Answer: 24.(d)
Solution:
Formula:
- Equation for $SHM$ is given as
$ \begin{aligned} y & =5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t) \\ & =5 \times 2 (\frac{1}{2} \times \sin 3 \pi t+\frac{\sqrt{3}}{2} \cos 3 \pi t) \\ & =5 \times 2 (\cos \frac{\pi}{3} \cdot \sin 3 \pi t+\sin \frac{\pi}{3} \cdot 3 \pi t) \\ & =5 \times 2 \sin (3 \pi t+\frac{\pi}{3}) \\ & \quad[\text { using, } \sin (a+b)=\sin a \cos b+\cos a \sin b] \end{aligned} $
$ \text { or } \quad y=10 \sin (3 \pi t+\frac{\pi}{3}) $
Comparing this equation with the general equation of SHM, i.e.
$ y=A \sin (\frac{2 \pi t}{T}+\phi) $
We get, amplitude, $A=10 cm$
and $3 \pi=\frac{2 \pi}{T}$
or Time period, $T=\frac{2}{3} s$