Simple Harmonic Motion Ques 59

  1. Three simple harmonic motions in the same direction having the same amplitude and same period are superposed. If each differ in phase from the next by $45^{\circ}$, then

(1999, 3M)

(a) the resultant amplitude is $(1+\sqrt{2}) a$

(b) the phase of the resultant motion relative to the first is $90^{\circ}$

(c) the energy associated with the resulting motion is $(3+2 \sqrt{2)}$ times the energy associated with any single motion

(d) the resulting motion is not simple harmonic

Show Answer

Answer:

Correct Answer: 59.(a,c)

Solution:

Formula:

Combination Of Springs:

  1. From superposition principle

$ \begin{aligned} y & =y _1+y _2+y _3 \\ & =a \sin \omega t+a \sin \left(\omega t+45^{\circ}\right)+a \sin \left(\omega t+90^{\circ}\right) \\ & =a\left[\sin \omega t+\sin \left(\omega t+90^{\circ}\right)\right]+a \sin \left(\omega t+45^{\circ}\right) \\ & =2 a \sin \left(\omega t+45^{\circ}\right) \cos 45^{\circ}+a \sin \left(\omega t+45^{\circ}\right) \\ & =(\sqrt{2}+1) a \sin \left(\omega t+45^{\circ}\right)=A \sin \left(\omega t+45^{\circ}\right) \end{aligned} $

Therefore, resultant motion is simple harmonic of amplitude

$ A=(\sqrt{2}+1) a $

and which differ in phase by $45^{\circ}$ relative to the first.

Energy in SHM $\propto(\text { amplitude })^{2}\left[E=\frac{1}{2} m A^{2} \omega^{2}\right]$

$ \begin{array}{ll} \therefore & \frac{E _{\text {resultant }}}{E _{\text {single }}}=(\frac{A}{a})^{2}=(\sqrt{2}+1)^{2}=(3+2 \sqrt{2}) \\ \therefore & E _{\text {resultant }}=(3+2 \sqrt{2}) E _{\text {single }} \end{array} $



Table of Contents