Simple Harmonic Motion Ques 6

  1. A particle moves with simple harmonic motion in a straight line. In first $\tau \mathrm{sec}$, after starting from rest it travels a distance $a$ and in next $\tau$ sec, it travels $2 a$, in same direction, then

(2014 Main)

(a) amplitude of motion is $3 a$

(b) time period of oscillations is $8 \pi$

(c) amplitude of motion is $4 a$

(d) time period of oscillations is $6 \pi$

Show Answer

Answer:

Correct Answer: 6.( d )

Solution:

  1. In SHM, a particle starts from rest, we have i.e.

$ x=A \cos \omega t, \text { at } t=0, x=A $

When $t=\tau$, then $x=A-a$

When $\quad t=2 \tau$, then

$ x=A-3 a $

On comparing Eqs. (i) and (ii), we get

$ \begin{gathered} A-a=A \cos \omega \tau \\ A-3 a=A \cos 2 \omega \tau \end{gathered} $

As $\cos 2 \omega \tau=2 \cos ^2 \omega \tau-1$

$\Rightarrow \frac{A-3 a}{A}=2\left(\frac{A-a}{A}\right)^2-1 $

$\Rightarrow \frac{A-3 a}{A}= \frac{2 A^2+2 a^2-4 A a-A^2}{A^2} $

$ A^2-3 a A =A^2+2 a^2-4 A a $

$a^2 =2 a A $

$\Rightarrow A =2 a $

$\text { Now, } A-a =A \cos \omega \tau $

$ \cos \omega \tau =1 / 2$

$\begin{aligned} \Rightarrow & \frac{2 \pi}{T} \tau & =\frac{\pi}{3} \\ \Rightarrow & T & =6 \pi\end{aligned}$



Table of Contents