Simple Harmonic Motion Ques 7
- A pendulum is executing simple harmonic motion and its maximum kinetic energy is $K _1$. If the length of the pendulum is doubled and it performs simple harmonic motion with the same amplitude as in the first case, its maximum kinetic energy is $K _2$. Then
(2019 Main, 11 Jan III)
(a) $K _2=2 K _1$
(b) $K _2=\frac{K _1}{2}$
(c) $K _2=\frac{K _1}{4}$
(d) $K _2=K _1$
Show Answer
Answer:
Correct Answer: 7.(b)
Solution:
Formula:
- Kinetic energy of a pendulum is maximum at its mean position.
Also, maximum kinetic energy of pendulum
$ K _{\max }=\frac{1}{2} m \omega^{2} a^{2} $
where,angular frequency
$ \begin{aligned} \omega & =\frac{2 \pi}{T}=\frac{2 \pi}{2 \pi \sqrt{\frac{l}{g}}} \\ \text { or } \quad \omega & =\sqrt{\frac{g}{l}} \text { or } \omega^{2}=\frac{g}{l} \end{aligned} $
and $a=$ amplitude.
As amplitude is same in both cases so;
or
$ \begin{aligned} & K _{\max } \propto \omega^{2} \\ & K _{\max } \propto \frac{1}{l} \end{aligned} $
$[\because g$ is constant $]$
According to given data, $K _1 \propto \frac{1}{l}$
$\text { and } K _2 \propto \frac{1}{2 l} $
$\therefore (\frac{K _1}{K _2})=\frac{1 / l}{1 / 2 l}=2 $
$\text { or } K _1=2 K _2 \Rightarrow K _2=\frac{K _1}{2}$