Wave Motion Ques 1

  1. A copper wire is held at the two ends by rigid supports. At $30^{\circ} \mathrm{C}$, the wire is just taut, with negligible tension. Find the speed of transverse waves in this wire at $10^{\circ} \mathrm{C}$.

Given, Young modulus of copper $=1.3 \times 10^{11} \mathrm{~N} / \mathrm{m}^2$.

Coefficient of linear expansion of copper $=1.7 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$.

Density of copper $=9 \times 10^3 \mathrm{~kg} / \mathrm{m}^3$.

(1979, 4M)

Show Answer

Answer:

Correct Answer: 1.70.1 m/s

Solution:

  1. Tension due to thermal stresses,

$ T=Y A \alpha \cdot \Delta \theta \Rightarrow v=\sqrt{\frac{T}{\mu}} $

Here, $\mu=$ mass per unit length. $=\rho A$

$ \therefore \quad v=\sqrt{\frac{T}{\rho A}}=\sqrt{\frac{Y A \alpha \cdot \Delta \theta}{\rho A}}=\sqrt{\frac{Y \alpha \Delta \theta}{\rho}} $

Substituting the values we have,

$ \begin{aligned} v & =\sqrt{\frac{1.3 \times 10^{11} \times 1.7 \times 10^{-5} \times 20}{9 \times 10^3}} \\ & =70.1 \mathrm{~m} / \mathrm{s} \end{aligned} $



Table of Contents