Work Power And Energy Ques 2

Show Answer

Answer:

Correct Answer: 2.$u=\sqrt{g L\left(2+\frac{3 \sqrt{3}}{2}\right)}$

Solution:

Formula:

Work-Energy Theorem:

Now, we have following equations

(1) $T_Q=0$. Therefore, $m g \sin \theta=\frac{m v^2}{L}$

(2) $v^2=u^2-2 g h=u^2-2 g L(1+\sin \theta)$

(3) $Q D=\frac{1}{2}$ (Range)

$ \Rightarrow\left(L \cos \theta-\frac{L}{8}\right)=\frac{v^2 \sin 2\left(90^{\circ}-\theta\right)}{2 g}=\frac{v^2 \sin 2 \theta}{2 g} $

Eq. (iii) can be written as $\left(\cos \theta-\frac{1}{8}\right)=\left(\frac{v^2}{g L}\right) \sin \theta \cos \theta$

Substituting value of $\left(\frac{v^2}{g L}\right)=\sin \theta$ from Eq. (i), we get

$ \left(\cos \theta-\frac{1}{8}\right)=\sin ^2 \theta \cdot \cos \theta=\left(1-\cos ^2 \theta\right) \cos \theta $

or $\quad \cos \theta-1 / 8=\cos \theta-\cos ^3 \theta$

$\therefore \cos ^3 \theta=1 / 8$ or $\cos \theta=1 / 2$ or $\theta=60^{\circ}$

From Eq. (i), $v^2=g L \sin \theta=g L \sin 60^{\circ}$

or

$ v^2=\frac{\sqrt{3}}{2} g L $

$\therefore$ Substituting this value of $v^2$ in Eq. (ii)

$ u^2=v^2+2 g L(1+\sin \theta) $



Table of Contents