Chemical Equilibrium Question 4

Question 4 - 29 January - Shift 2

At $298 K$

$N_2(g)+3 H_2(g) \leftrightharpoons 2 NH_3(g), K_1=4 \times 10^{5}$

$N_2(g)+O_2(g) \leftrightharpoons 2 NO(g), K_2=1.6 \times 10^{12}$

$H_2(g)+\frac{1}{2} O_2(g) \leftrightharpoons H_2 O(g), K_3=1.0 \times 10^{-13}$

Based on above equilibria, the equilibrium constant of the reaction,

$2 NH_3(g)+\frac{5}{2} O_2(g) \leftrightharpoons 2 NO(g)+3 H_2 O(g)$

is $\quad \times 10^{-33} \quad$ (Nearest integer)

Show Answer

Answer: (4)

Solution:

Formula: Equilibrium constant

$ \begin{aligned} & N_2(g)+3 H_2(g) \leftrightharpoons 2 NH_3(g), K_1=4 \times 10^{5} \quad……(i) \\ & N_2(g)+O_2(g) \leftrightharpoons 2 NO(g), K_2=1.6 \times 10^{12}\quad……(ii) \\ & H_2(g)+\frac{1}{2} O_2(g) \leftrightharpoons H_2 O(g), K_3=1.0 \times 10^{-13}\quad……(iii) \\ & \text{ (ii) }+3 \times(\text{ iii) }- \text{ (i) } \\ & 2 NH_3(g)+\frac{5}{2} O_2(g) \leftrightharpoons 2 NO(g)+3 H_2 O(g) \\ & k _{eq}=\frac{k_2 \times k_3^{3}}{k_1}=\frac{1.6 \times 10^{12} \times(10^{-13})^{3}}{4 \times 10^{5}} \\ & =\frac{1.6}{4} \times 10^{-32}=4 \times 10^{-33} \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ