Chemical Equilibrium Question 6

Question 6 - 31 January - Shift 1

For reaction: $SO_2(g)+\frac{1}{2} O_2(g) \rightarrow SO_3(g)$

$K_P=2 \times 10^{12}$ at $27^{\circ} C$ and $1 atm$ pressure. The $K_c$ for the same reaction is $\quad \times 10^{13}$. (Nearest integer)

(Given $R=0.082 L atm K^{-1} mol^{-1}$ )

Show Answer

Answer: (1)

Solution:

Formula:

The relationship between $K_p$ and $K_c$ for a gaseous reaction is given by the equation:

$$ K_p=K_c(R T)^{\Delta n}…………………..(1) $$

Where:

  • $R=0.082 \mathrm{~L} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1}$ is the gas constant,
  • $T$ is the temperature in Kelvin,
  • $\Delta n$ is the change in moles of gas (products - reactants).

For the reaction:

$$ \mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{SO}_3(\mathrm{~g}) $$

The change in moles of gas is:

$$ \Delta n=1-\left(1+\frac{1}{2}\right)=-\frac{1}{2} $$

Given:

  • $K_p=2 \times 10^{12}$
  • Temperature, $T=27^{\circ} \mathrm{C}=300 \mathrm{~K}$

Substituting these values into the equation (1):

$$ K_c=\frac{K_P}{(R T)^{\Delta n}}=\frac{2 \times 10^{12}}{(0.082 \times 300)^{-\frac{1}{2}}} = 9.92 \times 10^{12} \approx 1 \times 10^{13} $$

The equilibrium constant $K_c$ for the reaction at $27^{\circ} \mathrm{C}$ is approximately $1 \times 10^{13}$. So, answer is 1.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ