Three Dimensional Geometry Question 34

Question 34 - 01 February - Shift 2

The point of intersection $C$ of the plane $8x + y + 2z = 0$ and the line joining the points $A(–3, –6, 1)$ and $B(2, 4, –3)$ divides the line segment $AB$ internally in the ratio $k : 1.$ If $a, b, c (|a|, |b|, |c|$ are coprime $)$ are the direction ratios of the perpendicular from the point $C$ on the line $\frac{1-x}1 = \frac{y + 4}2 = \frac{z + 2}3$, then $|a + b + c|$ is equal to ______.

Show Answer

Answer: 10

Solution:

Formula: Section Formula, Direction Cosines And Direction Ratios

Plane : $8 x+y+2 z=0$

Given line $A B: \frac{x-2}{5}=\frac{y-4}{10}=\frac{z+3}{-4}=\lambda$

Any point on line $(5 \lambda+2,10 \lambda+4,-4 \lambda-3)$

Point of intersection of line and plane

$8(5 \lambda+2)+10 \lambda+4-8 \lambda-6=0$

$\lambda=-\frac{1}{3}$

C $(\frac{1}{3}, \frac{2}{3},-\frac{5}{3})$

$L: \frac{x-1}{-1}=\frac{y+4}{2}=\frac{z+2}{3}=\mu$

$\overrightarrow{{}CD}=(-\mu+\frac{2}{3}) \hat{i}+(2 \mu-\frac{14}{3}) \hat{j}+(3 \mu-\frac{1}{3}) \hat{k}$

$(-\mu+\frac{2}{3})(-1)+(2 \mu-\frac{14}{3}) 2+(3 \mu-\frac{1}{3}) 3=0$

$\mu=\frac{11}{14}$

$\overrightarrow{{}CD}=\frac{-5}{42}, \frac{-130}{42}, \frac{85}{42}$

Direction ratios $(-1,-26,17)$

$\therefore |a+b+c| = |-1-26+17|$

$|a+b+c|=|-10|$

$|a+b+c|=10$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें