Chapter 01 Number Systems Exercise-04

EXERCISE 1.4

1. Classify the following numbers as rational or irrational:

(i) $2-\sqrt{5}$

(ii) $(3+\sqrt{23})-\sqrt{23}$

(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

(iv) $\frac{1}{\sqrt{2}}$

(v) $2 \pi$

Show Answer

Solution

(i) ${ }^{2-\sqrt{5}}=2-2.2360679 \ldots$

$=-0.2360679 \ldots$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

(ii)

$ (3+\sqrt{23})-\sqrt{23}=3=\frac{3}{1} \quad \text{ number. form, therefore, it is a } $

As it can be represented in $\frac{p}{q}$

(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$ : $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$, which is a rational number.

(iv) $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=0.7071067811 \ldots$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number. ( $v)$

$2 п=2(3.1415 \ldots)$

$=6.2830 \ldots$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

2. Simplify each of the following expressions:

(i) $(3+\sqrt{3})(2+\sqrt{2})$

(ii) $(3+\sqrt{3})(3-\sqrt{3})$

(iii) $(\sqrt{5}+\sqrt{2})^{2}$

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Show Answer

Solution

$ \begin{aligned} & (3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2}) \\ & =6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6} \\ & \quad(3+\sqrt{3})(3-\sqrt{3})=(3)^{2}-(\sqrt{3})^{2} \\ & \text{ (ii) } \\ & =9-3=6 \\ & \text{ (iii) }(\sqrt{5}+\sqrt{2})^{2}=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2}) \\ & =5+2+2 \sqrt{10}=7+2 \sqrt{10} \\ & \text{ (iv) }(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^{2}-(\sqrt{2})^{2} \\ & =5-2=3 \end{aligned} $

3. Recall, $\pi$ is defined as the ratio of the circumference (say $c$ ) of a circle to its diameter (say $d$ ). That is, $\pi=\frac{c}{d}$. This seems to contradict the fact that $\pi$ is irrational. How will you resolve this contradiction?

Show Answer

Solution

There is no contradiction. When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value. For this reason, we may not realise that either $c$ or $d$ is irrational. Therefore,

the $\quad \frac{c}{d}$ fraction is irrational. Hence, $\pi$ is irrational.

4. Represent $\sqrt{9.3}$ on the number line.

Show Answer

Solution

Mark a line segment $O B=9.3$ on number line. Further, take $B C$ of 1 unit. Find the midpoint D of OC and draw a semi-circle on OC while taking D as its centre. Draw a

(i)

$\frac{1}{\sqrt{7}}=\frac{1 \times \sqrt{7}}{1 \times \sqrt{7}}=\frac{\sqrt{7}}{7}$

perpendicular to line $O C$ passing through point $B$. Let it intersect the semi-circle at $E$.

Taking B as centre and BE as radius, draw an arc in tersecting number line at $F$. BF is $\sqrt{9.3}$.

5. Rationalise the denominators of the following:

(i) $\frac{1}{\sqrt{7}}$

(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$

(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$

(iv) $\frac{1}{\sqrt{7}-2}$

Show Answer

Solution

(i)

$ \begin{aligned} 64^{\frac{1}{2}} & =(2^{6})^{\frac{1}{2}} & =2^{2}=4 \\ & =2^{6 \times \frac{1}{2}} & {[(a^{m})^{n}=a^{m m !}] _{(16)^{\frac{3}{4}}=(2^{4})^{\frac{3}{4}}}^{(iii)} } \\ & =2^{3}=8 & \end{aligned} $

$ =2^{5 \times \frac{2}{3}} \quad[(a^{m})^{n \prime}=a^{m m n}] $

(ii)

$ \begin{aligned} 32^{\frac{1}{5}} & =(2^{5})^{\frac{1}{5}} \\ & =(2)^{5 \times \frac{1}{5}} \\ & =2^{1}=2 \end{aligned} $

$ \begin{aligned} & =2^{4 \times \frac{3}{4}} \\ & {[(a^{m})^{n}=a^{m m}]} \\ & {[(a^{m})^{n}=a^{m m}] _{(125)^{\frac{-1}{3}}}^{(iv)}=\frac{1}{(125)^{\frac{1}{3}}}} \\ & =2^{3}=8 \end{aligned} $

$(125)^{\frac{1}{3}}=(5^{3})^{\frac{1}{3}}$

$ \begin{matrix} =5^{3 \times \frac{1}{3}} & {[(a^{m})^{n}=a^{m m}]} & =\frac{1}{5^{3 \times \frac{1}{3}}} \\ =5^{1}=5 & =\frac{1}{5} \end{matrix} $

$ [a^{-m}=\frac{1}{a^{m}}] $



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें