Chapter 02 Polynomials Exercise-02

EXERCISE 2.2

1. Find the value of the polynomial $5 x-4 x^{2}+3$ at

(i) $x=0$

(ii) $x=-1$

(iii) $x=2$

Show Answer

Solution

$ \begin{aligned} & \text{ (i) } p(x)=5 x-4 x^{2}+3 \\ & p(0)=5(0)-4(0)^{2}+3 \\ & \quad=3 \\ & p(x)=5 x-4 x^{2}+3 \end{aligned} $

(ii)

$ \begin{aligned} & p(-1)=5(-1)-4(-1)^{2}+3 \\ & =-5-4(1)+3=-6 \\ & p(x)=5 x-4 x^{2}+3 \\ & \text{ (iii) } \\ & p(2)=5(2)-4(2)^{2}+3 \\ & =10-16+3=-3 \end{aligned} $

2. Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials:

(i) $p(y)=y^{2}-y+1$

(ii) $p(t)=2+t+2 t^{2}-t^{3}$

(iii) $p(x)=x^{3}$

(iv) $p(x)=(x-1)(x+1)$

Show Answer

Solution

(i) $p(y)=y^{2}-y+1 p(0)=$

$(0)^{2}-(0)+1=1 p(1)=(1)^{2}-(1)+1=$

$1 p(2)=(2)^{2}-(2)+1=3$ (ii) $p(t)=$

$2+t+2 t^{2}-t^{3} p(0)=2+0+2(0)^{2}-$

$(0)^{3}=2 p(1)=2+(1)+2(1)^{2}-(1)^{3}$

$=2+1+2-1=4 p(2)=$

$2+2+2(2)^{2}-(2)^{3}$

$=2+2+8-8=4$

(iii) $p(x)=x^{3} p(0)=(0)^{3}=0 \quad p(1)=$

$(1)^{3}=1 p(2)=(2)^{3}=8$ (iv) $p(x)=(x-1)(x$

+1) $p(0)=(0-1)(0+1)=(-1)$

$(1)=-1 p(1)=(1-1)(1+1)=0(2)=0$

$p(2)=(2-1)(2+1)=1(3)=3$

3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i) $p(x)=3 x+1, x=-\frac{1}{3}$

(ii) $p(x)=5 x-\pi, x=\frac{4}{5}$

(iii) $p(x)=x^{2}-1, x=1,-1$

(iv) $p(x)=(x+1)(x-2), x=-1,2$

(v) $p(x)=x^{2}, x=0$

(vi) $p(x)=l x+m, x=-\frac{m}{l}$

(vii) $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

(viii) $p(x)=2 x+1, x=\frac{1}{2}$

Show Answer

Solution

(i) If $x=\frac{-1}{3}$ is a zero of given polynomial $p(x)=3 x+1$, then $\quad p(-\frac{1}{3})$ should be 0 .

Here, $p(\frac{-1}{3})=3(\frac{-1}{3})+1=-1+1=0$

Therefore, $x=\frac{-1}{3}$ is a zero of the given polynomial.

(ii) If $x=\frac{4}{5}$ is a zero of nolvnomial $p(x)=5 x-\pi$, then ${ }^{p(\frac{4}{5})}$ should be 0 .

Here, $p(\frac{4}{5})=5(\frac{4}{5})-\pi=4-\pi$

As $p(\frac{4}{5}) \neq 0$,

Therefore, $x=\frac{4}{5}$ is not a zero of the given polynomial.

(iii) If $x=1$ and $x=-1$ are zeroes of polynomial $p(x)=x^{2}-1$, then $p(1)$ and $p(-1)$ should be 0 .

Here, $p(1)=(1)^{2}-1=0$, and $p(-1)$

$=(-1)^{2}-1=0$

Hence, $x=1$ and -1 are zeroes of the given polynomial.

(iv) If $x=-1$ and $x=2$ are zeroes of polynomial $p(x)=(x+1)(x-2)$, then $p(-1)$ and $p(2)$ should be 0 .

Here, $p(-1)=(-1+1)(-1-2)=0(-3)=0$, and $p(2)$

$=(2+1)(2-2)=3(0)=0$

Therefore, $x=-1$ and $x=2$ are zeroes of the given polynomial.

(v) If $x=0$ is a zero of polynomial $p(x)=x^{2}$, then $p(0)$ should be zero.

Here, $p(0)=(0)^{2}=0$

Hence, $x=0$ is a zero of the given polynomial.

(vi) If $x=\frac{-m}{l}$ is a zero of polynomial $p(x)=I x+m$, then should be 0 .

Here,

$ p(\frac{-m}{l})=l(\frac{-m}{l})+m=-m+m=0 $

Therefore, $\quad x=-\frac{m}{l}$ is a zero of the given polynomial.

(vii) If $x=\frac{-1}{\sqrt{3}}$ and $\quad x=\frac{2}{\sqrt{3}}$ are zeroes of polynomial $p(x)=3 x^{2}-1$, then

$p(\frac{-m}{l})$

$p(\frac{-1}{\sqrt{3}})$ and $p(\frac{2}{\sqrt{3}})$ should be 0 .

Here, $p(\frac{-1}{\sqrt{3}})=3(\frac{-1}{\sqrt{3}})^{2}-1=3(\frac{1}{3})-1=1-1=0$, and

$p(\frac{2}{\sqrt{3}})=3(\frac{2}{\sqrt{3}})^{2}-1=3(\frac{4}{3})-1=4-1=3$

Hence, $\quad x=\frac{-1}{\sqrt{3}}$ is a zero of the given polynomial. However, $\quad x=\frac{2}{\sqrt{3}}$ is not a zero of the given polynomial.

(viii) If $\quad$ is a zero of polynomial $p(x)=2 x+1$, then $\quad$ should be 0 .

$ \begin{aligned} & x=\frac{1}{2} \\ & \text{ is a zero of polynor } \\ & (\frac{1}{2})=2(\frac{1}{2})+1=1+1=2 \end{aligned} $

As $p(\frac{1}{2}) \neq 0$,

Here, $p(\frac{1}{2})=2(\frac{1}{2})+1=1+1=2$

$ x=\frac{1}{2} \text{ is not a zero of the given polynomial. } $

4. Find the zero of the polynomial in each of the following cases:

(i) $p(x)=x+5$

(ii) $p(x)=x-5$

(iii) $p(x)=2 x+5$

(iv) $p(x)=3 x-2$

(v) $p(x)=3 x$

(vi) $p(x)=a x, a \neq 0$

(vii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers.

Show Answer

Solution

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

(i) $p(x)=x+5 p(x)$

$=0 x+5=0 x=-5$

Therefore, for $x$ $=-5$, the value of the polynomial is 0 and hence, $x=$ -5 is a zero of the given polynomial. (ii)

$ \begin{aligned} & p(x)=x-5 \\ & p(x)=0 x-5 \\ & =0 x=5 \end{aligned} $

Therefore, for $x=5$, the value of the polynomial is 0 and hence, $x=5$ is a zero of the given polynomial. (iii) $p(x)=2 x+5 p(x)=0$

$2 x+5=0$

$2 x=-5$

$x=-\frac{5}{2}$

Therefore, for $x=-\frac{5}{2}$, the value of the polynomial is 0 and hence, $x=\frac{-5}{2}$ is a zero of the given polynomial. (iv) $p(x)=3 x-2 p(x)=0$

$3 x-2=0$

$x=\frac{2}{3}$

Therefore, for $x=\frac{2}{3}$, the value of the polynomial is 0 and hence, $x=\frac{2}{3}$ is a zero of the given polynomial. (v) $p(x)=3 x p(x)=03 x=0 x=0$

Therefore, for $x=0$, the value of the polynomial is 0 and hence, $x=0$ is a zero of the given polynomial. (vi) $p(x)=a x p(x)=0 a x=0 x=0$

Therefore, for $x=0$, the value of the polynomial is 0 and hence, $x=0$ is a zero of the given polynomial. (vii) $p(x)=c x+d p(x)=0 c x+d=0$

$ x=\frac{-d}{c} $

Therefore, for $x=\frac{-d}{c}$, the value of the polynomial is 0 and hence, $x=\frac{-d}{c}$ is a zero of the given polynomial.



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ