Chapter 02 Polynomials Exercise-03

EXERCISE 2.3

1. Determine which of the following polynomials has $(x+1)$ a factor :

(i) $x^{3}+x^{2}+x+1$

(ii) $x^{4}+x^{3}+x^{2}+x+1$

(iii) $x^{4}+3 x^{3}+3 x^{2}+x+1$

(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Show Answer

Solution

(i) If $(x+1)$ is a factor of $p(x)=x^{3}+x^{2}+x+1$, then $p(-1)$ must be zero, otherwise $(x+1)$ is not a factor of $p(x)$.

$p(x)=x^{3}+x^{2}+x+1 p(-1)=$

$(-1)^{3}+(-1)^{2}+(-1)+1$

$=-1+1-1-1=0$

Hence, $x+1$ is a factor of this polynomial.

(ii) If $(x+1)$ is a factor of $p(x)=x^{4}+x^{3}+x^{2}+x+1$, then $p(-1)$ must be zero, otherwise $(x+1)$ is not a factor of $p(x) \cdot p(x)=x^{4}+x^{3}+x^{2}+x+1 p(-1)=$

$(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$

$=1-1+1-1+1=1$

As $p \neq 0,(-1)$

Therefore, $x+1$ is not a factor of this polynomial.

(iii) If $(x+1)$ is a factor of polynomial $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$, then $p(-1)$ must be 0 , otherwise $(x+1)$ is not a factor of this polynomial. $p(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$

$=1-3+3-1+1=1$

As $p \neq 0,(-1)$

Therefore, $x+1$ is not a factor of this polynomial.

(iv) If $(x+1)$ is a factor of polynomial $p(x) x^{x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}}$, then $p(-1)$ must be 0 , otherwise $(x+1)$ is not a factor of this polynomial.

$ \begin{aligned} p(-1) & =(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2} \\ & =-1-1+2+\sqrt{2}+\sqrt{2} \\ & =2 \sqrt{2} \end{aligned} $

As $p \neq 0,(-1)$

Therefore, $(x+1)$ is not a factor of this polynomial.

2. Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases:

(i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$

(ii) $p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$

(iii) $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$

Show Answer

Solution

(i) If $g(x)=x+1$ is a factor of the given polynomial $p(x)$, then $p(-1)$ must be zero. $p(x)=2 x^{3}+x^{2}-2 x-1 p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$

$=2(-1)+1+2-1=0$

Hence, $g(x)=x+1$ is a factor of the given polynomial.

(ii) If $g(x)=x+2$ is a factor of the given polynomial $p(x)$, then $p(-2)$ must be 0.

$ \begin{aligned} & p(x)=x^{3}+3 x^{2}+3 x+1 p(-2)= \\ & (-2)^{3}+3(-2)^{2}+3(-2)+1 \\ & =-8+12-6+1 \\ & =-1 \end{aligned} $

As $p \neq 0,(-2)$

Hence, $g(x)=x+2$ is not a factor of the given polynomial.

(iii) If $g(x)=x-3$ is a factor of the given polynomial $p(x)$, then $p(3)$ must be 0.

$ \begin{aligned} & p(x)=x^{3}-4 x^{2}+x+6 p(3) \\ & =(3)^{3}-4(3)^{2}+3+6=27 \\ & -36+9=0 \end{aligned} $

Hence, $g(x)=x-3$ is a factor of the given polynomial.

3. Find the value of $k$, if $x-1$ is a factor of $p(x)$ in each of the following cases:

(i) $p(x)=x^{2}+x+k$

(ii) $p(x)=2 x^{2}+k x+\sqrt{2}$

(iii) $p(x)=k x^{2}-\sqrt{2} x+1$

(iv) $p(x)=k x^{2}-3 x+k$

Show Answer

Solution

If $x-1$ is a factor of polynomial $p(x)$, then $p(1)$ must be 0 .

$ \begin{aligned} & \text{ (i) } p(x)=x^{2}+x+kp(1) \\ & =0 \\ & \Rightarrow(1) \quad 2+1+k=0 \\ & \Rightarrow(2)+k=0 \Rightarrow k \\ & =-2 \end{aligned} $

Therefore, the value of $k$ is -2 .

(ii)

$ p(x)=2 x^{2}+k x+\sqrt{2} $

$p(1)=0$

$\Rightarrow 2(1)^{2}+k(1)+\sqrt{2}=0$

$\Rightarrow 2+k+\sqrt{2}=0$

$\Rightarrow k=-2-\sqrt{2}=-(2+\sqrt{2})$

Therefore, the value of $k$ is $-(2+\sqrt{2})$.

(iii) $p(x)=k x^{2}-\sqrt{2} x+1$

$p(1)=0$

$\Rightarrow k(1)^{2}-\sqrt{2}(1)+1=0$

$\Rightarrow k-\sqrt{2}+1=0$

$\Rightarrow k=\sqrt{2}-1$

Therefore, the value of $k$ is $\sqrt{2}-1$.

(iv) $p(x)=k x^{2}-3 x+k$

$\Rightarrow p(1)=0 \Rightarrow k(1)^{2}-$

$3(1)+k=0 \Rightarrow k-3$

$+k=0$

$\Rightarrow \quad 2 k-3=0$

$\Rightarrow k=\frac{3}{2}$

Therefore, the value of $k$ is $\frac{3}{2}$.

4. Factorise :

(i) $12 x^{2}-7 x+1$

(ii) $2 x^{2}+7 x+3$

(iii) $6 x^{2}+5 x-6$

(iv) $3 x^{2}-x-4$

Show Answer

Solution

(i) $12 x^{2}-7 x+1$

We can find two numbers such that $pq=12 \times 1=12$ and $p+q=-7$. They are $p=-4$ and $q=-3$.

Here, $12 x^{2}-7 x+1=12 x^{2}-4 x-3 x+1$

$=4 x(3 x-1)-1(3 x-1)$ $=(3 x-1)(4 x-1)$

(ii) $2 x^{2}+7 x+3$

We can find two numbers such that $p q=2 \times 3=6$ and $p+q=7$.

They are $p=6$ and $q=1$.

Here, $2 x^{2}+7 x+3=2 x^{2}+6 x+x+3$

$=2 x(x+3)+1(x+3)=(x$

$+3)(2 x+1)$

(iii) $6 x^{2}+5 x-6$

We can find two numbers such that $p q=-36$ and $p+q=5$.

They are $p=9$ and $q=-4$.

Here,

$6 x^{2}+5 x-6=6 x^{2}+9 x-4 x-6$

$=3 x(2 x+3)-2(2 x+3)$

$=(2 x+3)(3 x-2)$

(iv) $3 x^{2}-x-4$

We can find two numbers such that $pq=3 \times(-4)=-12$ and $p+q=-1$.

They are $p=-4$ and $q=3$.

Here,

$ \begin{aligned} & 3 x^{2}-x-4=3 x^{2}-4 x+3 x-4 \\ & =x(3 x-4)+1(3 x-4)= \\ & (3 x-4)(x+1) \text{ Question 5: } \end{aligned} $

5. Factorise :

(i) $x^{3}-2 x^{2}-x+2$

(ii) $x^{3}-3 x^{2}-9 x-5$

(iii) $x^{3}+13 x^{2}+32 x+20$

(iv) $2 y^{3}+y^{2}-2 y-1$

Show Answer

Solution

(i) Let $p(x)=x^{3}-2 x^{2}-x+2$

All the factors of 2 have to be considered. These are $\pm 1, \pm 2$.

By trial method, $p(2)=(2)^{3}-2(2)^{2}-2+2$

$=8-8-2+2=0$

Therefore, $(x-2)$ is factor of polynomial $p(x)$.

Let us find the quotient on dividing $x^{3}-2 x^{2}-x+2$ by $x-2$.

By long division,

$$ \begin{matrix} x^2-3 x+2 \\ x + 1 \overline{) { x ^ { 3 } - 2 x ^ { 2 } - x + 2 }} \\ x^{3}+x^{2} \\ \hline - \\ \hline 3 x^{2}-x+2 \\ -3 x^{2}-3 x \\ +\quad+ \\ 2 x+2 \\ 2 x+2 \\ \end{matrix} $$

It is known that,

Dividend $=$ Divisor $\times$ Quotient + Remainder

$\therefore x^{3}$

$-2 x^{2}-x+2=(x+1)(x^{2}-3 x+2)+0=$

$(x+1)[x^{2}-2 x-x+2]$

$=(x+1)[x(x-2)-1(x-2)]$

$=(x+1)(x-1)(x-2)$

$=(x-2)(x-1)(x+1)$

(ii) Let $p(x)=x^{3}-3 x^{2}-9 x-5$

All the factors of 5 have to be considered. These are $\pm 1, \pm 5$.

By trial method, $p(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5$

$=-1-3+9-5=0$

Therefore, $x+1$ is a factor of this polynomial.

Let us find the quotient on dividing $x^{3}+3 x^{2}-9 x-5$ by $x+1$.

By long division,

$ \begin{matrix} x^{2}-4 x-5 \\ x + 1 )\overline { x ^ { 3 } - 3 x ^ { 2 } - 9 x - 5 } \\ x^{3}+x^{2} \\ -\quad- \\ \hline 4 x^{2}-9 x-5 \\ -4 x^{2}-4 x \\ +\quad+ \\ \hline \begin{matrix} -5 x-5 \\ -5 x-5 \\ + \end{matrix} \\ \hline 0 \end{matrix} $

It is known that,

$ \begin{aligned} & \text{ Dividend }=\text{ Divisor } \times \text{ Quotient }+ \text{ Remainder } \therefore x^{3} \\ & -3 x^{2}-9 x-5=(x+1)(x^{2}-4 x-5)+0 \\ & =(x+1)(x^{2}-5 x+x-5) \\ & =(x+1)[(x(x-5)+1(x-5)] \\ & =(x+1)(x-5)(x+1) \\ & =(x-5)(x+1)(x+1) \end{aligned} $

(iii) Let $p(x)=x^{3}+13 x^{2}+32 x+20$

All the factors of 20 have to be considered. Some of them are $\pm 1$,

$\pm 2, \pm 4, \pm 5 \ldots \ldots$ By trial method, $p(-1)$

$=(-1)^{3}+13(-1)^{2}+$

$ \begin{aligned} & 32(-1)+20 \\ & =-1+13-32+20 \\ & =33-33=0 \end{aligned} $

As $p(-1)$ is zero, therefore, $x+1$ is a factor of this polynomial $p(x)$.



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ