Chapter 06 Lines And Angles Exercise-01

EXERCISE 6.1

1. In Fig. 6.13, lines $\mathrm{AB}$ and $\mathrm{CD}$ intersect at $\mathrm{O}$. If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle \mathrm{BOE}$ and reflex $\angle \mathrm{COE}$.

Fig. 6.13

Show Answer

Solution

$A B$ is a straight line, rays $O C$ and $O E$ stand on it.

$\therefore \angle AOC+\angle COE+\angle BOE=180^{\circ}$

$\Rightarrow(\angle AOC+\angle BOE)+\angle COE=180^{\circ}$

$\Rightarrow 70^{\circ}+\angle COE=180^{\circ}$

$\Rightarrow \angle COE=180^{\circ}-70^{\circ}=110^{\circ}$

Reflex $\angle COE=360^{\circ}-110^{\circ}=250^{\circ}$

$CD$ is a straight line, rays $OE$ and $OB$ stand on it.

$\therefore \angle COE+\angle BOE+\angle BOD=180^{\circ}$

$\Rightarrow 110^{\circ}+\angle BOE+40^{\circ}=180^{\circ}$

$\Rightarrow \angle BOE=180^{\circ}-150^{\circ}=30^{\circ}$

2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at $O$. If $\angle \mathrm{POY}=90^{\circ}$ and $a: b=2: 3$, find $c$.

Fig. 6.14

Show Answer

Solution

Let the common ratio between $a$ and $b$ be $x . \quad \therefore$

$X Y$ is a straight line, rays OM and OP stand on it.

$\therefore X O M+MOP+\angle POY=180^{\circ} b+a+POY=180^{\circ}$

$3 x+2 x+90^{\circ}=180^{\circ} 5 x=90^{\circ} x=18^{\circ} a=$

$2 x=2 \times 18=36^{\circ} b=$

$3 x=3 \times 18=54^{\circ}$

MN is a straight line. Ray OX stands on it.

$\therefore b+c=180^{\circ}$ (Linear Pair)

$54^{\circ}+c=180^{\circ} c=180^{\circ}-$

$54^{\circ}=126^{\circ} \quad \therefore c=126^{\circ}$

3. In Fig. 6.15, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Fig. 6.15

Show Answer

Solution

In the given figure, ST is a straight line and ray QP stands on it.

$\therefore 4 Q S+P Q R=180^{\circ}$ (Linear Pair)

$\angle PQR=180^{\circ}-\angle PQS(1)$

PRT $+\angle PRQ=180^{\circ}$ (Linear Pair)

${ }^{\angle} PRQ=180^{\circ}-PRT$ (2)

It is given that $4 PQR=\angle PRQ$.

Equating equations (1) and (2), we obtain

$ \begin{aligned} & 180^{\circ}-\stackrel{\angle}{ }{ }^{PQS}=180^{\circ}-PRT \angle PQS \\ & =\angle PRT \end{aligned} $

4. In Fig. 6.16, if $x+y=w+z$, then prove that $\mathrm{AOB}$ is a line.

Fig. 6.16

Show Answer

Solution

It can be observed that, $x+y+z+w$ then prove that $A O B$ is a line.

$=360^{\circ}$ (Complete angle) It is given

that, $x+y=z+w \quad \therefore x+y+x+y$

$=360^{\circ}$

$2(x+y)=360^{\circ} x$

$+y=180^{\circ}$

Since $x$ and $y$ form a linear pair, $A O B$ is a line.

5. In Fig. 6.17, $\mathrm{POQ}$ is a line. Ray $\mathrm{OR}$ is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$.

Show Answer

Solution

It is given that $OR PQ \quad \perp$

$\therefore \quad \therefore POR=90^{\circ}$

$\therefore \quad \therefore POS+\therefore SOR=90^{\circ}$

$\therefore ROS=90^{\circ}-\therefore POS$.

$\therefore QOR=90^{\circ}$ (As OR $.\therefore PQ)$

$\therefore QOS-\therefore ROS=90^{\circ}$

$\therefore ROS=\therefore QOS-90^{\circ}$

On adding equations (1) and (2), we obtain

6. It is given that $\angle \mathrm{XYZ}=64^{\circ}$ and $\mathrm{XY}$ is produced to point $\mathrm{P}$. Draw a figure from the given information. If ray $\mathrm{YQ}$ bisects $\angle \mathrm{ZYP}$, find $\angle \mathrm{XYQ}$ and reflex $\angle \mathrm{QYP}$.

Fig. 6.17

Show Answer

Solution

It is given that line YQ bisects $\therefore P Y Z$.

Hence, $\therefore QYP=\therefore ZYQ$

It can be observed that $PX$ is a line. Rays $YQ$ and $YZ$ stand on it.

$\therefore X Y Z+Z Y Q+\therefore Q Y P=180^{\circ}$

$\therefore 64^{\circ}+2 QYP=180^{\circ}$

$\therefore 2$ Q̈PP $=180^{\circ}-64^{\circ}=116^{\circ}$

$\therefore \dot{Q} QP=58^{\circ}$

Also, $\stackrel{\grave{Z}}{ZYQ}=\therefore QYP=58^{\circ}$

Reflex QYP $=360^{\circ}-58^{\circ}=302^{\circ}$

$X Y Q=X Y Z+a Z Y Q$

$=64^{\circ}+58^{\circ}=122^{\circ}$



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें