Chapter 06 Lines And Angles Exercise-02

EXERCISE 6.2

1. In Fig. 6.23, if $\mathrm{AB}||\mathrm{CD}, \mathrm{CD}|| \mathrm{EF}$ and $y: z=3: 7$, find $x$.

Fig. 6.23

Show Answer

Solution

It is given that $A B | C D$ and $C D | E F$

$\therefore A B | C D|| E F$ (Lines parallel to the same line are parallel to each other) It can be observed that $x=z$

(Alternate interior angles) … (1)

It is given that $y: z=3: 7$

Let the common ratio between $y$ and $z$ be $a$. $\therefore$

$y=3 a$ and $z=7 a$

Also, $x+y=180^{\circ}$ (Co-interior angles on the same side of the transversal) $z$

$+y=180^{\circ}$ [Using equation (1)]

$7 a+3 a=180^{\circ}$

$10 a=180^{\circ} a=$

$18^{\circ} \therefore x=7 a=7 \times 18^{\circ}=$

2. In Fig. 6.24, if $\mathrm{AB} || \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Fig. 6.24

Show Answer

Solution

It is given that, $A B | C D$

EF CD

$\therefore GED=126^{\circ}$

$\therefore \therefore$ GEF $+\therefore F E D=1260$

$\therefore \quad GEF+90^{\circ}=126^{\circ}$

$\therefore \therefore \quad GEF=36^{\circ}$

$\therefore \quad$ AGE and GED are alternate interior angles.

$\therefore \quad \therefore \quad$ AGE $=$ GED $=126^{\circ}$

Howềver, $AGÉ+FGE=180^{\circ}$ (Linear pair)

$\therefore \quad 1260^{\circ}+FGE=180^{\circ}$

$\therefore \quad \therefore \quad FGE=180^{\circ}-126^{\circ}=54^{\circ}$

$AGE=126^{\circ}, \therefore GEF=36^{\circ}, \therefore FGE=54^{\circ}$

3. In Fig. 6.25, if $\mathrm{PQ} || \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.

[Hint : Draw a line parallel to ST through point R.]

Fig. 6.25

Show Answer

Solution

Let us draw a line XY parallel to ST and passing through point $R$. $\therefore PQR+QRX=180^{\circ}$ (Co-interior angles on the same side of transversal QR)

$\therefore 110^{\circ}+Q R X=180^{\circ}$

$\therefore QRX=70^{\circ}$

Also,

$\therefore RST+\therefore$ SRY $=180^{\circ}$ (Co-interior angles on the same side of transversal SR) $0+S R Y=180^{\circ} 130$

$\therefore SRY=50^{\circ}$

$XY$ is a straight line. RQ and RS stand on it.

$\therefore \therefore QRX+\therefore QRS+\therefore SRY=180^{\circ} \circ+QRS+50^{\circ}=180^{\circ} 70$

$QRS=180^{\circ}-120^{\circ}=60^{\circ}$

$\therefore$

4. In Fig. 6.26, if $\mathrm{AB} || \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find $x$ and $y$.

Fig. 6.26

Show Answer

Solution

$\therefore APR=\therefore PRD$ (Alternate interior angles) In the given figure, if $AB | CD, APQ=50^{\circ}$ and $\therefore$ $P R D=1270$, find $x$ and $y$.

$50^{\circ}+y=127^{\circ} y=$

$127^{\circ}-50^{\circ} y=$

770

Also, $A P Q=P Q R$ (Alternate interior angles)

$50^{\circ}=x \quad x=50^{\circ}$ and $y=770$

5. In Fig. 6.27, PQ and RS are two mirrors placed parallel to each other. An incident ray $\mathrm{AB}$ strikes the mirror $\mathrm{PQ}$ at $\mathrm{B}$, the reflected ray moves along the path $\mathrm{BC}$ and strikes the mirror $\mathrm{RS}$ at $\mathrm{C}$ and again reflects back along $\mathrm{CD}$. Prove that $\mathrm{AB} || \mathrm{CD}$.

Fig. 6.27

Show Answer

Solution

Let us draw $BM \therefore PQ$ and $CN \therefore RS$.

As PQ || RS,

Therefore, BM || CN

Thus, $BM$ and $CN$ are two parallel lines and a transversal line $BC$ cuts them at $B$ and

C respectively.

$\therefore A=3$ (Alternate interior angles) 2

However, $1=2$ and $3=* 4$ (By"laws of reflection)

$\therefore 1=2 \doteq 3=4$

Also, $\dot{1}+2 \stackrel{\dot{\circ}}{=} 3+\dot{4}$

$\therefore ABC=\ddot{DCB}$

However, these are alternate interior angles. :

$A B|| C D$



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें