Chapter 07 Triangles Exercise-01

EXERCISE 7.1

1. In quadrilateral $\mathrm{ACBD}$, $\mathrm{AC}=\mathrm{AD}$ and $\mathrm{AB}$ bisects $\angle \mathrm{A}$ (see Fig. 7.16). Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$. What can you say about $\mathrm{BC}$ and $\mathrm{BD}$ ?

Fig. 7.16

Show Answer

Solution

$\triangle A B C \quad \triangle A B D$. What can you say about $B C$ and $B D$ ?

In $\triangle A B C$ and $\triangle A B D$,

$A C=A D$ (Given)

$\angle CAB=\angle DAB(AB$ bisects $\angle A)$

$A B=A B$ (Common)

$\therefore \quad \triangle ABC \cong \triangle ABD$ (By SAS congruence rule)

$\therefore \quad BC=BD(By CPCT)$

Therefore, BC and BD are of equal lengths.

2. $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$ (see Fig. 7.17). Prove that

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$

(ii) $\mathrm{BD}=\mathrm{AC}$

(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$.

Show Answer

Solution

In $\triangle A B D$ and $\triangle B A C$,

$A D=B C($ Given)

$\angle \angle$

$DAB=CBA($ Given)

$AB=BA$ (Common)

$\therefore \triangle ABD \cong \triangle BAC$ (By SAS congruence rule)

$\therefore BD=AC$ (By CPCT) And, $\angle ABD$

$=\widehat{B A C}(B y C P C T)$

3. $\mathrm{AD}$ and $\mathrm{BC}$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that CD bisects $\mathrm{AB}$.

Show Answer

Solution

In $\triangle B O C$ and $\triangle A O D$,

$ \begin{aligned} & \angle \quad \angle BOC=AOD \text{ (Vertically opposite angles) } \\ & \angle \quad CBO=DAO(\text{ Each } 90^{\circ}) \\ & BC=AD \text{ (Given) } \\ & \therefore \quad \triangle BOC \cong \triangle AOD \text{ (AAS congruence rule) } \\ & \therefore \quad BO=AO(By C P C T) \\ & \Rightarrow \quad CD \text{ bisects } AB . \end{aligned} $

4. $\quad l$ and $m$ are two parallel lines intersected by another pair of parallel lines $p$ and $q$ (see Fig. 7.19). Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$.

Fig. 7.19

Show Answer

Solution

In $\triangle ABC$ and $\triangle CDA$,

$ \begin{aligned} & \angle BAC=\angle DCA \text{ (Alternate interior angles, as } p | q) \\ & AC=CA \text{ (Common) } \\ & \angle \quad \angle BCA=DAC \text{ (Alternate interior angles, as } \mid | m \text{ ) } \\ & \therefore \quad \therefore \quad \triangle ABC \triangle CDA(By \text{ ASA congruence rule) } \\ & \text{ Question 5: } \end{aligned} $

5. Line $l$ is the bisector of an angle $\angle \mathrm{A}$ and $\mathrm{B}$ is any point on $l$. $\mathrm{BP}$ and $\mathrm{BQ}$ are perpendiculars from $\mathrm{B}$ to the arms of $\angle A$ (see Fig. 7.20). Show that:

(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$

(ii) $\mathrm{BP}=\mathrm{BQ}$ or $\mathrm{B}$ is equidistant from the arms of $\angle \mathrm{A}$.

Fig. 7.20

Show Answer

Solution

In $\triangle A P B$ and $\triangle A Q B$,

$ \begin{aligned} & \therefore \quad \therefore \quad APB=AQB(\text{ Each 90) } \\ & \therefore \quad \therefore \quad PAB=QAB(I \text{ is the angle bisector of } \therefore A) \end{aligned} $

$A B=A B$ (Common)

$\therefore \triangle APB \therefore \triangle AQB$ (By AAS congruence rule) $\therefore BP=$

BQ (By CPCT)

rms of $\therefore A$. Or, it can be said that $B$ is equidistant from the a

6. In Fig. 7.21, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{BAD}=\angle \mathrm{EAC}$. Show that $\mathrm{BC}=\mathrm{DE}$.

Fig. 7.21

Show Answer

Solution

It is given that $\therefore B A D=\therefore E A C$

$\therefore BAD+\therefore DAC=\therefore EAC+\therefore DAC$

$\therefore B A C=\therefore DAE$

In $\triangle B A C$ and $\triangle D A E, A B=A D$

(Given) $\therefore BAC=$

$\therefore$ DAE (Proved above)

$A C=A E($ Given)

$\therefore \quad \triangle BAC \therefore \triangle DAE$ (By SAS congruence rule)

$\therefore \quad BC=DE(By CPCT)$

7. $\mathrm{AB}$ is a line segment and $\mathrm{P}$ is its mid-point. $\mathrm{D}$ and $\mathrm{E}$ are points on the same side of $\mathrm{AB}$ such that $\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$ (see Fig. 7.22). Show that

(i) $\triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$

(ii) $\mathrm{AD}=\mathrm{BE}$

Fig. 7.22

Show Answer

Solution

It is given that EPA $=$ DPB

$\therefore \quad \therefore E P A+D ’ P E=D P B+D P E$

$\therefore \therefore$ DPA $=$ ÉPB

In $\sqrt{\Delta} \sqrt{\Delta}$ EBP,

$\therefore$ DAP $=$ 岸 (Given)

$A P=B P(P$ is mid-point of $A B)$

$\therefore \quad \therefore \quad$ DPA $=$ EPB (From above)

$\therefore \quad \therefore \quad \triangle$ DAP $\triangle$ EBP (ASA congruence rule)

$\therefore \quad AD=BE(By CPCT)$

8. In right triangle $A B C$, right angled at $C, M$ is the mid-point of hypotenuse AB. C is joined to $\mathrm{M}$ and produced to a point $\mathrm{D}$ such that $\mathrm{DM}=\mathrm{CM}$. Point $\mathrm{D}$ is joined to point $\mathrm{B}$ (see Fig. 7.23). Show that:

(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$

(ii) $\angle \mathrm{DBC}$ is a right angle.

(iii) $\Delta \mathrm{DBC} \cong \triangle \mathrm{ACB}$

(iv) $\mathrm{CM}=\frac{1}{2} \mathrm{AB}$

Fig. 7.23

Show Answer

Solution

(i) In $\triangle A M C$ and $\triangle B M D$,

$A M=B M$ ( $M$ is the mid-point of $A B$ )

$\therefore$ AMC $=\therefore$ BMD (Vertically opposite angles)

$CM=DM$ (Given)

$\therefore \quad \triangle AMC \therefore \triangle BMD$ (By SAS congruence rule)

$\therefore \quad AC=BD(By C P C T)$ And,

$\therefore$ ACM $=: BDM(By$ CPCT) ii)

$\therefore \quad ACM=` BDM($

However, AेंCM and ¿BDM are alternate interior angles.

Since alternate angles are equal,

It can be said that $D B | A C$

$ \begin{aligned} & \therefore \quad DBC+\therefore ACB=180^{\circ} \text{ (Co-interior angles) } \\ & \therefore \quad \therefore \quad DBC+90^{\circ}=180^{\circ} \\ & \therefore \quad \therefore \quad DBC=90^{\circ} \end{aligned} $

(iii) In $\triangle DBC$ and $\triangle ACB$,

$DB=AC$ (Already proved)

$\therefore DBC=\therefore ACB(.$ Each 90 $.{ }^{\circ})$

$BC=CB$ (Common)

$\therefore \triangle DBC \quad \triangle ACB$ (SAS congruence rule) iv)

$\triangle DBC \triangle ACB($

$\therefore \quad AB=DC(By CPCT)$

$\therefore \quad AB=2 CM$

$\therefore CM=\frac{1}{2} AB$



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें