Chapter 07 Triangles Exercise-02

EXERCISE 7.2

1. In an isosceles triangle $\mathrm{ABC}$, with $\mathrm{AB}=\mathrm{AC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at $\mathrm{O}$. Join $\mathrm{A}$ to $\mathrm{O}$. Show that :

(i) $\mathrm{OB}=\mathrm{OC}$

(ii) $\mathrm{AO}$ bisects $\angle \mathrm{A}$

Show Answer

Solution

(i) It is given that in triangle $A B C, A B=A C$

$\Rightarrow \angle A C B=\angle A B C$ (Angles opposite to equal sides of a triangle are equal)

$ \begin{aligned} & \Rightarrow \frac{1}{2} \angle A C B=\frac{1}{2} \angle A B C \ & \Rightarrow \angle O C B=\angle O B C \end{aligned} $

$\Rightarrow \mathrm{OB}=\mathrm{OC}$ (Sides opposite to equal angles of a triangle are also equal)

(ii) In $\triangle O A B$ and $\triangle O A C$,

$\mathrm{AO}=\mathrm{AO}$ (Common)

$A B=A C($ Given $)$

$O B=O C$ (Proved above)

Therefore, $\triangle O A B \cong \triangle O A C$ (By SSS congruence rule)

$\Rightarrow \angle B A O=\angle C A O$ (CPCT)

$\Rightarrow \mathrm{AO}$ bisects $\angle \mathrm{A}$.

2. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the perpendicular bisector of $\mathrm{BC}$ (see Fig. 7.30). Show that $\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$.

Fig. 7.30

Show Answer

Solution

In $\triangle A D C$ and $\triangle A D B$,

$A D=A D$ (Common)

$\therefore A D C=\therefore A D B($ Each 90) $C D=B D(A D$ is the perpendicular bisector of $B C)$

$\therefore \quad \triangle ADC \therefore \triangle ADB$ (By SAS congruence rule)

$\therefore \quad AB=AC(By CPCT)$

Therefore, $A B C$ is an isosceles triangle in which $A B=A C$.

3. $\mathrm{ABC}$ is an isosceles triangle in which altitudes $\mathrm{BE}$ and $\mathrm{CF}$ are drawn to equal sides $\mathrm{AC}$ and $\mathrm{AB}$ respectively (see Fig. 7.31). Show that these altitudes are equal.

Fig. 7.32

Show Answer

Solution

In $\triangle A E B$ and $\triangle A F C$,

$\therefore A E B$ and $A F C(.$ Each $.90^{\circ}) \quad A=$

$\therefore A$ (Common angle) $A B=A C$ (Given)

$\therefore \triangle AEB \therefore \triangle AFC$ (By AAS congruence rule) $\therefore BE=$ $CF$ (By CPCT)

4. $\mathrm{ABC}$ is a triangle in which altitudes $\mathrm{BE}$ and $\mathrm{CF}$ to sides $A C$ and $A B$ are equal (see Fig. 7.32). Show that

(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$

(ii) $\mathrm{AB}=\mathrm{AC}$, i.e., $\mathrm{ABC}$ is an isosceles triangle.

Fig. 7.32

Show Answer

Solution

(i) In $\triangle A B E$ and $\triangle A C F$,

$\therefore ABE$ and $ACF(.$ Each $90^{\circ}$ )

$\therefore A=A^{\prime}$ (Common angle)

$B E=C F$ (Given)

$\therefore \triangle ABE \therefore \triangle ACF$ (By AAS congruence rule)

(ii) It has already been proved that

$\triangle ABE \bullet \triangle ACF$

$\therefore A B=A C(B y C P C T)$

5. $\mathrm{ABC}$ and $\mathrm{DBC}$ are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle \mathrm{ABD}=\angle \mathrm{ACD}$.

Fig. 7.33

Show Answer

Solution

Let us join $A D$.

In $\triangle A B D$ and $\triangle A C D$,

$A B=A C$ (Given)

$B D=C D$ (Given)

$A D=A D$ (Common side)

$\therefore \triangle ABD \cong \quad \triangle ACD$ (By SSS congruence rule)

$\therefore \quad \therefore ABD=A ACD(By CPCT)$

6. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side $\mathrm{BA}$ is produced to $\mathrm{D}$ such that $\mathrm{AD}=\mathrm{AB}$ (see Fig. 7.34). Show that $\angle B C D$ is a right angle.

Fig. 7.34

Show Answer

Solution

In $\triangle ABC$,

$A B=A C$ (Given)

$\therefore \therefore ACB=\therefore ABC$ (Angles opposite to equal sides of a triangle are also equal)

In $\triangle ACD$,

$A C=A D$

$\therefore \therefore$ ADC $=: A C D$ (Angles opposite to equal sides of a triangle are also equal)

In $\triangle B C D$,

$\therefore A B C+B C D+A D C=180^{\circ}$ (Angle sum property of a triangle)

$\therefore A \dot{C B}+ACB+ACD+\therefore ACD=180^{\circ}$

$\therefore \quad \therefore 2(ACB+ACD)=180^{\circ}$

$\therefore \quad \therefore \quad 2(BCD)=180^{\circ}$

$\therefore B C D=90^{\circ}$

7. $\mathrm{ABC}$ is a right angled triangle in which $\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$. Find $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

Show Answer

Solution

It is given that

$A B=A C$

$\therefore \dot{C}=B$ (Angles opposite to equal sides are also equal)

In $\triangle ABC$

$\therefore A+\dot{B}+C=180^{\circ}$ (Angle sum property of a triangle)

$\therefore 90^{\circ}+\stackrel{\therefore}{B}+C \stackrel{\therefore}{=} 180^{\circ}$

$\therefore 90^{\circ}+\stackrel{\therefore}{B}+B \stackrel{\therefore}{=} 180^{\circ}$

$\therefore \quad \therefore \quad 90^{\circ}$

$\therefore$ :

$B=450$

$B=C=45^{\circ}$

8. Show that the angles of an equilateral triangle are $60^{\circ}$ each.

Show Answer

Solution

Let us consider that $A B C$ is an equilateral triangle.

Therefore, $A B=B C=A C$

$A B=A C$

$\therefore C=B$ (Angles opposite to equal sides of a triangle are equal)

Also,

$AC=BC$

$\therefore B=A$ (Angles opposite to equal sides of a triangle are equal)

Therefore, we obtain $\therefore$ A

$=B \cdot C \therefore$

In $\triangle ABC$,

$\therefore A+B+C=180^{\circ}$

$\therefore A^{\circ}+A+A+180^{\circ}$

$\therefore 3 \dot{A}=180^{\circ}$

$\therefore \dot{A}=60^{\circ}$

$\therefore \dot{A}=B \stackrel{\Delta}{=} C=\ddot{6} 0^{\circ}$ Hence, in an equilateral triangle, all interior angles are of measure $60^{\circ}$.



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ