Chapter 07 Triangles Exercise-03

EXERCISE 7.3

1. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles on the same base $\mathrm{BC}$ and vertices $\mathrm{A}$ and $\mathrm{D}$ are on the same side of $\mathrm{BC}$ (see Fig. 7.39). If $\mathrm{AD}$ is extended to intersect $\mathrm{BC}$ at $\mathrm{P}$, show that

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$

(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$

(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.

(iv) $\mathrm{AP}$ is the perpendicular bisector of $\mathrm{BC}$.

Fig. 7.39

Show Answer

Solution

(i) In $\triangle A B D$ and $\triangle A C D$,

$ \begin{aligned} & A B=A C \ldots \text {…(since } \triangle A B C \text { is isosceles) } \\ & A D=A D \ldots \text {…(common side) } \\ & B D=D C \text {…(since } \triangle \mathrm{BDC} \text { is isosceles) } \\ & \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} \text {…..SSS test of congruence, } \\ & \therefore \angle \mathrm{BAD}=\angle \mathrm{CAD} \text { i.e. } \angle \mathrm{BAP}=\angle \mathrm{PAC} \text {…..[c.a.c.t]…..(i) } \end{aligned} $

(ii) In $\triangle A B P$ and $\triangle A C P$,

$ \begin{aligned} & A B=A C \ldots \text {…(since } \triangle A B C \text { is isosceles) } \\ & A P=A P \ldots \text {…ommon side) } \\ & \angle B A P=\angle P A C \text {….from (i) } \\ & \triangle A B P \cong \triangle A C P \text {…. SAS test of congruence } \\ & \therefore B P=P C \text {…[C.s.c.t]…..(ii) } \\ & \angle A P B=\angle A P C \text {….c.a.c.t. } \end{aligned} $

(iii) Since $\triangle A B D \cong \triangle A C D$

$ \angle \mathrm{BAD}=\angle \mathrm{CAD} \text {….from (i) } $

So, $A$ bisects $\angle A$

i.e. AP bisects $\angle A$…..(iii)

In $\triangle \mathrm{BDP}$ and $\triangle \mathrm{CDP}$,

DP $=$ DP …common side

$B P=P C$…from (ii)

$\mathrm{BD}=\mathrm{CD}$…(since $\triangle \mathrm{BDC}$ is isosceles)

$\triangle \mathrm{BDP} \cong \triangle \mathrm{CDP}$….SSS test of congruence

$\therefore \angle \mathrm{BDP}=\angle \mathrm{CDP}$….c.a.c.t.

$\therefore \mathrm{DP}$ bisects $\angle \mathrm{D}$

So, AP bisects $\angle \mathrm{D}$

From (iii) and (iv),

AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.

(iv) We know that

$\angle A P B+\angle A P C=180^{\circ} \ldots$ (angles in linear pair)

Also, $\angle \mathrm{APB}=\angle \mathrm{APC}$… from (ii)

$\therefore \angle \mathrm{APB}=\angle \mathrm{APC}=\frac{180^{\circ}}{2}=90^{\circ}$

$\mathrm{BP}=\mathrm{PC}$ and $\angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}$

Hence, $\mathrm{AP}$ is perpendicular bisector of $\mathrm{BC}$.

2. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that

(i) $\mathrm{AD}$ bisects $\mathrm{BC}$

(ii) $\mathrm{AD}$ bisects $\angle \mathrm{A}$.

Show Answer

Solution

(i) In $\triangle B A D$ and $\triangle C A D$,

$\therefore A D B=\therefore A D C$ (Each $90^{\circ}$ as AD is an altitude)

$A B=A C$ (Given)

$A D=A D$ (Common)

$\therefore \quad \triangle BAD \therefore \triangle CAD$ (By RHS Congruence rule)

$\therefore \quad BD=CD(By CPCT)$

Hence, $A D$ bisects $B C$.

(ii) Also, by CPCT,

$\therefore B A D=C A D$ Hence, $A D$

bisects A. :

3. Two sides $\mathrm{AB}$ and $\mathrm{BC}$ and median $\mathrm{AM}$ of one triangle $\mathrm{ABC}$ are respectively equal to sides $\mathrm{PQ}$ and $\mathrm{QR}$ and median $P N$ of $\triangle P Q R$ (see Fig. 7.40). Show that:

(i) $\triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$

(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Fig. 7.40

Show Answer

Solution

(i) In $\triangle A B C, A M$ is the median to $B C$.

$ \begin{aligned} & \therefore \quad BM={ }^{\frac{1}{2}} BC \\ & \therefore \quad Q N={ }^{\frac{1}{2}} QR \end{aligned} $

However, $BC=QR$

$\therefore{ }^{\frac{1}{2}} _{BC}{ }^{\frac{1}{2}} QR$

$\therefore \quad BM=QN \ldots$ (1)

In $\triangle A B M$ and $\triangle P Q N$, In $\triangle P Q R, P N$ is the median to $Q R$.

$ \begin{aligned} & A B=P Q \text{ (Given) } \\ & BM=QN[\text{ From equation (1)] } \\ & A M=P N(\text{ Given) } \\ & \therefore \quad \therefore \quad \triangle ABM \quad \triangle PQN \text{ (SSS congruence rule) } \\ & \therefore \quad \therefore \quad A B M=P Q N(B y C P C T) \\ & \therefore \quad \therefore \quad A B C=P Q R \ldots(2) \end{aligned} $

(ii) In $\triangle A B C$ and $\triangle P Q R$,

$A B=P Q$ (Given)

$\therefore A B C=\therefore P Q R$ [From equation (2)]

$BC=QR$ (Given)

$\therefore \triangle ABC \therefore \triangle PQR$ (By SAS congruence rule)

4. $\mathrm{BE}$ and $\mathrm{CF}$ are two equal altitudes of a triangle $\mathrm{ABC}$. Using RHS congruence rule, prove that the triangle $\mathrm{ABC}$ is isosceles.

Show Answer

Solution

In $\triangle B E C$ and $\triangle C F B$,

$\therefore BEC=\therefore CFB(.$ Each $.90^{\circ})$

$BC=CB$ (Common)

$B E=C F$ (Given)

$\therefore \triangle BEC \quad \triangle CFB$ (By RHS congruency)

$\therefore B B^{\prime} C=C B ‘(B y C P C T)$

$\therefore A B=A C$ (Sides opposite to equal angles of a triangle are equal)

Hence, $\triangle ABC$ is isosceles.

5. $\mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$. Draw $\mathrm{AP} \perp \mathrm{BC}$ to show that $\angle \mathrm{B}=\angle \mathrm{C}$.

Show Answer

Solution

In $\triangle A P B$ and $\triangle A P C$,

$\therefore APB=\therefore APC(.$ Each $.90^{\circ})$

$A B=A C($ Given $)$

$A P=A P($ Common $)$

$\therefore \triangle APB \quad \triangle APC$ (Using RHS congruence rule)

$\therefore B^{\prime \prime}=C$ (By using CPCT)



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ