Chapter 09 Circles Exercise-03

EXERCISE 9.3

1. In Fig. 9.23, $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ are three points on a circle with centre $\mathrm{O}$ such that $\angle \mathrm{BOC}=30^{\circ}$ and $\angle \mathrm{AOB}=60^{\circ}$. If $\mathrm{D}$ is a point on the circle other than the $\operatorname{arc} \mathrm{ABC}$, find $\angle \mathrm{ADC}$.

Fig. 9.23

Show Answer

Solution

It can be observed that

$\angle A O C=\angle A O B+\angle B O C$

$=60^{\circ}+30^{\circ}$

$=90^{\circ}$

We know that angle subtended by an arc at the centre is double the angle subtended by it any point on the remaining part of the circle.

$ \angle ADC=\frac{1}{2} \angle AOC=\frac{1}{2} \times 90^{\circ}=45^{\circ} $

2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Show Answer

Solution

In $\triangle OAB$,

$A B=O A=O B=$ radius

$\angle \triangle OAB$ is an equilateral triangle.

Therefore, each interior angle of this triangle will be of $60^{\circ}$. $\angle \angle AOB=60^{\circ}$

$\angle ACB=\frac{1}{2} \angle AOB=\frac{1}{2}(60^{\circ})=30^{\circ}$

In cyclic quadrilateral $A C B D$,

$\angle ACB+\angle ADB=180^{\circ}$ (Opposite angle in cyclic quadrilateral)

$\angle \angle ADB=180^{\circ}-30^{\circ}=150^{\circ}$

Therefore, angle subtended by this chord at a point on the major arc and the minor arc are $30^{\circ}$ and $150^{\circ}$ respectively.

3. In Fig. 9.24, $\angle \mathrm{PQR}=100^{\circ}$, where $\mathrm{P}, \mathrm{Q}$ and $\mathrm{R}$ are points on a circle with centre $\mathrm{O}$. Find $\angle \mathrm{OPR}$.

Fig. 9.24

Show Answer

Solution

Consider PR as a chord of the circle.

Take any point $S$ on the major arc of the circle.

PQRS is a cyclic quadrilateral.

$\angle PQR+PSR=180^{\circ}$ (Opposite angles of a cyclic quadrilateral)

$\angle P S SR=180^{\circ}-100^{\circ}=80^{\circ}$

We know that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle. $\angle \angle POR=2 \angle PSR=$ $2(80^{\circ})=160^{\circ}$

In $\triangle POR$,

$OP=OR$ (Radii of the same circle)

$\angle$ OPPR $=$ ORP (Angles opposite to equal sides of a triangle)

$\mathrm{OPR}+\mathrm{ORP}+\mathrm{POR}=180^{\circ}$ (Angle sum property of a triangle)

$\angle \mathrm{OPR}+160^{\circ}=180^{\circ} 2$

$\angle \mathrm{OPR}=180^{\circ}-160^{\circ}=20^{\circ} 2$

$\angle \mathrm{OPR}=10^{\circ}$

4. In Fig. 9.25, $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.

Fig. 9.25

Show Answer Solution

5. In Fig. 9.26, A, B, C and D are four points on a circle. $\mathrm{AC}$ and $\mathrm{BD}$ intersect at a point $\mathrm{E}$ such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.

Fig. 9.26

Show Answer

Solution

$\angle CDE+DCE=\angle CEB$ (Exterior angle)

$\angle C D E+20^{\circ}=130^{\circ}$

$\angle CDE=110^{\circ}$

For chord CD,

$<\quad<$

$\angle CAD=70^{\circ}$

$ \begin{aligned} & \angle \quad \angle \quad B C D+B A=180^{\circ} \text{ (Opposite angles of a } By \\ & +100^{\circ}=180^{\circ} \quad BCD \\ & \angle BCD=80^{\circ} \\ & \text{ In } \triangle ABC \text{, } \\ & AB=BC \text{ (Given) } \\ & \angle \angle BCA=\angle CAB \text{ (Angles opposite to equal sides of a triangle) } \\ & \angle \angle BCA=30^{\circ} \end{aligned} $

$ \angle \quad \angle \quad BCD+BAD=180^{\circ} \text{ (Opposite angles of a cyclic quadrilateral) } \angle $

However, $\angle BAC=\angle CDE$ (Angles in the same segment of a circle)

$\angle \angle BAC=110^{\circ}$

6. $\mathrm{ABCD}$ is a cyclic quadrilateral whose diagonals intersect at a point $\mathrm{E}$. If $\angle \mathrm{DBC}=70^{\circ}$, $\angle \mathrm{BAC}$ is $30^{\circ}$, find $\angle \mathrm{BCD}$. Further, if $\mathrm{AB}=\mathrm{BC}$, find $\angle \mathrm{ECD}$.

Show Answer

Solution

$BAD=BAC+CAD=30^{\circ}+70^{\circ}=100^{\circ}$

CD + BAD $=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) $\angle$

We have, $B^{\prime} C D=80^{\circ}$

$ \begin{aligned} & \angle B^{\prime} C A+A C D=80^{\circ} \\ & \circ+A C D=80^{\circ} 30 \quad A C D \\ & \angle=\angle 50^{\circ} \\ & \angle \angle \\ & E C D=50^{\circ} \end{aligned} $

7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Show Answer

Solution

Let $A B C D$ be a cyclic quadrilateral having diagonals $B D$ and $A C$, intersecting each other at point $O$.

$ \angle BAD=\frac{1}{2} \angle BOD=\frac{180^{\circ}}{2}=90^{\circ} $

$ \begin{aligned} & \angle BCD+\angle BAD=180^{\circ} \text{ (Cyclic quadrilateral) (Consider } BD \text{ as a chord) } \\ & \angle BCD=180^{\circ}-90^{\circ}=90^{\circ} \\ & \angle ADC=\frac{1}{2} \angle AOC=\frac{1}{2}(180^{\circ})=90^{\circ} \\ & \angle ADC+\angle ABC=180^{\circ}(\text{ Cyclic quadrilateral })^{\circ} \\ & +\angle ABC=180^{\circ} 90 \end{aligned} $

$\angle A B C=90^{\circ}$

(Considering $AC$ as a chord)

Each interior angle of a cyclic quadrilateral is of $90^{\circ}$. Hence, it is a rectangle.

8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Show Answer

Solution

Consider a trapezium $A B C D$ with $A B|| C D$ and $B C=A D$.

Draw $AM \angle CD$ and $BN \angle CD$.

In $\triangle A M D$ and $\triangle B N C$,

$A D=B C$ (Given)

$\angle AMD=\angle BNC(.$ By construction, each is $.90^{\circ})$

$AM=BM$ (Perpendicular distance between two parallel lines is same)

$\angle \triangle AMD \triangle BNC$ (RHS congruence rule)

$\angle A D C=B C \mathscr{C}(C P C T) \ldots$

${ }^{\angle} B A D$ and $A D C$ are on the same side of transversal AD.

$\angle BAD+\stackrel{\angle ADC}{ }=180^{\circ}$.

$\angle \quad \angle$

$B A D+B C D=180^{\circ}[$ Using equation (1)]

This equation shows that the opposite angles are supplementary.

Therefore, $A B C D$ is a cyclic quadrilateral.

9. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at $\mathrm{A}, \mathrm{D}$ and $\mathrm{P}$, $Q$ respectively (see Fig. 9.27). Prove that $\angle \mathrm{ACP}=\angle \mathrm{QCD}$.

Fig. 9.27

Show Answer

Solution

Join chords AP and DQ. $\quad \angle \angle$

For chord AP,

$\angle PBA=\angle ACP$ (Angles in the same segment) …

For chord DQ,

$\angle DBQ=\Phi CD$ (Angles in the same segment) … (2) ABD and

PBQ are line segments intersecting at $B$.

$\angle PBA=$ DBQ (Vertically opposite angles) … (

From equations ( 1 ), ( 2 ), and ( 3 ), we obtain $\angle A C P$

$=\angle QCD$

10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Show Answer

Solution

Consider a $\triangle ABC$.

Two circles are drawn while taking $A B$ and $A C$ as the diameter.

Let they intersect each other at $D$ and let $D$ not lie on $B C$.

Join AD.

$\angle ADB=90^{\circ}$ (Angle subtended by semi-circle)

$\angle ADC=90^{\circ}$ (Angle subtended by semi-circle)

$\angle$

$ BDC=\angle ADB+\angle ADC=90^{\circ}+90^{\circ}=180^{\circ} $

Therefore, BDC is a straight line and hence, our assumption was wrong.

Thus, Point $D$ lies on third side $B C$ of $\triangle A B C$.

11. $\mathrm{ABC}$ and $\mathrm{ADC}$ are two right triangles with common hypotenuse $\mathrm{AC}$. Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.

Show Answer

Solution

In $\triangle ABC$,

$«<$

$\angle 90^{\circ}+\angle BCA+\angle CAB=180^{\circ}$

$\angle \angle BCA+\angle CAB=90^{\circ} \ldots$ (1) $ABC+BCA+CAB=180^{\circ}$ (Angle sum property of a triangle)

In $\triangle ADC$,

$\angle C D A+A C D+D A C=180^{\circ}$ (Angle sum property of a triangle)

$\angle 90^{\circ}+A^{\prime} C D+D^{\prime} C=180^{\circ}$

${ }^{\angle} A C D+D A C=90^{\circ}$

Adding equations (1) and (2), we obtain

$ BCA+CAB+ACD+DAC=180^{\circ} $

$\angle(BCA+\stackrel{\angle}{\angle} \angle ACD)+(CAB+DAC)=180^{\circ}$

$$ \begin{equation*} BCD+DAB=180^{\circ} \tag{3} \end{equation*} $$

However, it is given that

$\angle B+D=90^{\circ}+90^{\circ}=180^{\circ} \ldots$

From equations (3) and (4), it can be observed that the sum of the measures of opposite angles of quadrilateral $A B C D$ is $180^{\circ}$. Therefore, it is a cyclic quadrilateral.

Consider chord CD.

$\angle CAD=\angle CBD$ (Angles in the same segment)

12. Prove that a cyclic parallelogram is a rectangle.

Show Answer

Solution

Let $A B C D$ be a cyclic parallelogram. $\angle<$ A $+C=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) … (1)

$\angle A=\angle C$ and $\angle B=\angle D$ We know that opposite angles of a parallelogram are equal. $\angle$

From equation (1), $\angle A+\angle C=180^{\circ}$

$\angle \angle A+\angle A=180^{\circ}$

$\angle 2 \angle A=180^{\circ}$

$\angle \angle A=90^{\circ}$

Parallelogram $ABCD$ has one of its interior angles as $90^{\circ}$. Therefore, it is a rectangle.



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ