Chapter 11 Surface Areas and Volumes Exercise-03

EXERCISE 11.3

Assume $\pi=\frac{22}{7}$, unless stated otherwise.

1. Find the volume of the right circular cone with

(i) radius $6 \mathrm{~cm}$, height $7 \mathrm{~cm}$

(ii) radius $3.5 \mathrm{~cm}$, height $12 \mathrm{~cm}$

Show Answer

Solution

(i) Radius ( $r$ ) of cone $=6 cm$

Height (h) of cone $=7 cm$

Volume of cone

$ =\frac{1}{3} \pi r^{2} h $

$=[\frac{1}{3} \times \frac{22}{7} \times(6)^{2} \times 7] cm^{3}$

$=(12 \times 22) cm^{3}$

$=264 cm^{3}$

Therefore, the volume of the cone is $264 cm^{3}$.

(ii) Radius ( $r$ ) of cone $=3.5 cm$

Height (h) of cone $=12 cm$

Volume of cone

$ =\frac{1}{3} \pi r^{2} h $

$=[\frac{1}{3} \times \frac{22}{7} \times(3.5)^{2} \times 12] cm^{3}$

$=(\frac{1}{3} \times 22 \times \frac{1}{2} \times 3.5 \times 12) cm^{3}$

$=154 cm^{3}$

Therefore, the volume of the cone is $154 cm^{3}$.

2. Find the capacity in litres of a conical vessel with

(i) radius $7 \mathrm{~cm}$, slant height $25 \mathrm{~cm}$

(ii) height $12 \mathrm{~cm}$, slant height $13 \mathrm{~cm}$

Show Answer

Solution

(i) Radius ( $r$ ) of cone $=7 cm$

Slant height (I) of cone $=25 cm$

Height (h) of cone $=\sqrt{l^{2}-r^{2}}$

$=(\sqrt{25^{2}-7^{2}}) cm$

$=24 cm$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$=(\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 24) cm^{3}$

$=(154 \times 8) cm^{3}$

$=1232 cm^{3}$

Therefore, capacity of the conical vessel

$=(\frac{1232}{1000})$ litres $(1.$ litre $.=1000 cm^{3})$

$=1.232$ litres

(ii) Height (h) of cone $=12 cm$

Slant height $(I)$ of cone $=13 cm$

Radius $(r.$ ) of cone $=\sqrt{l^{2}-h^{2}}$

$=(\sqrt{13^{2}-12^{2}}) cm$

$=5 cm$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$ \begin{aligned} & =[\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12] cm^{3} \\ & =(4 \times \frac{22}{7} \times 25) cm^{3} \\ & =(\frac{2200}{7}) cm^{3} \end{aligned} $

Therefore, capacity of the conical vessel

$ \begin{aligned} &(\frac{2200}{7000}) \text{ litres }(1 \text{ litre }=1000 cm^{3}) \\ &= \frac{11}{35} \text{ litres } \\ & \text{ Question 3: } \end{aligned} $

3. The height of a cone is $15 \mathrm{~cm}$. If its volume is $1570 \mathrm{~cm}^{3}$, find the radius of the base. (Use $\pi=3.14$ )

Show Answer

Solution

Height $(h)$ of cone $=15 cm$

Let the radius of the cone be $r$. Volume of cone

$=1570 cm^{3}$

$\frac{1}{3} \pi r^{2} h=1570 cm^{3}$

$\Rightarrow(\frac{1}{3} \times 3.14 \times r^{2} \times 15) cm=1570 cm^{3}$

$\Rightarrow r^{2}=100 cm^{2}$

$\Rightarrow r=10 cm$

Therefore, the radius of the base of cone is $10 cm$.

4. If the volume of a right circular cone of height $9 \mathrm{~cm}$ is $48 \pi \mathrm{cm}^{3}$, find the diameter of its base.

Show Answer

Solution

Height (h) of cone $=9 cm$

Let the radius of the cone be $r$.

Volume of cone $=48 cm^{3}$

$\Rightarrow \frac{1}{3} \pi r^{2} h=48 \pi cm^{3}$

$\Rightarrow(\frac{1}{3} \pi r^{2} \times 9) cm=48 \pi cm^{3}$

$\Rightarrow r^{2}=16 cm^{2}$

$\Rightarrow r=4 cm$

Diameter of base $=2 r=8 cm$

5. A conical pit of top diameter $3.5 \mathrm{~m}$ is $12 \mathrm{~m}$ deep. What is its capacity in kilolitres?

Show Answer

Solution

Radius ( $r$ ) of pit

$ =(\frac{3.5}{2}) m=1.75 m $

Height $(h)$ of pit $=$ Depth of pit $=12 m$

Volume of pit

$ =\frac{1}{3} \pi r^{2} h $

$=[\frac{1}{3} \times \frac{22}{7} \times(1.75)^{2} \times 12] cm^{3}$

$=38.5 m^{3}$

Thus, capacity of the pit $=(38.5 \times 1)$ kilolitres $=38.5$ kilolitres

6. The volume of a right circular cone is $9856 \mathrm{~cm}^{3}$. If the diameter of the base is $28 \mathrm{~cm}$, find

(i) height of the cone

(ii) slant height of the cone

(iii) curved surface area of the cone

Show Answer

Solution

(i) Radius of cone $=(\frac{28}{2}) cm=14 cm$

Let the height of the cone be $h$. Volume of cone

$=9856 cm^{3}$

$ \begin{aligned} & \Rightarrow \frac{1}{3} \pi r^{2} h=9856 cm^{3} \\ & \Rightarrow[\frac{1}{3} \times \frac{22}{7} \times(14)^{2} \times h] cm^{2}=9856 cm^{3} \end{aligned} $

$h=48 cm$

Therefore, the height of the cone is $48 cm$.

(ii) Slant height (I) of cone $=\sqrt{r^{2}+h^{2}}$

$=[\sqrt{(14)^{2}+(48)^{2}}] cm$

$=[\sqrt{196+2304}] cm$

$=50 cm$

Therefore, the slant height of the cone is $50 cm$.

(iii) $CSA$ of cone $=nrl$

$=(\frac{22}{7} \times 14 \times 50) cm^{2}$

$=2200 cm^{2}$

Therefore, the curved surface area of the cone is $2200 cm^{2}$.

7. A right triangle $\mathrm{ABC}$ with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and $13 \mathrm{~cm}$ is revolved about the side $12 \mathrm{~cm}$. Find the volume of the solid so obtained.

Show Answer

Solution

When right-angled $\triangle A B C$ is revolved about its side $12 cm$, a cone with height $(h)$ as 12 $cm$, radius ( $r$ ) as $5 cm$, and slant height (I) $13 cm$ will be formed.

$ =\frac{1}{3} \pi r^{2} h $

Volume of cone

$=[\frac{1}{3} \times \pi \times(5)^{2} \times 12] cm^{3}$

$=100 \pi cm^{3}$

Therefore, the volume of the cone so formed is $100 n cm^{3}$.

8. If the triangle $\mathrm{ABC}$ in the Question 7 above is revolved about the side $5 \mathrm{~cm}$, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Questions 7 and 8.

Show Answer

Solution

When right-angled $\triangle A B C$ is revolved about its side $5 cm$, a cone will be formed having radius ( $r$ ) as $12 cm$, height ( $h$ ) as $5 cm$, and slant height $(I)$ as $13 cm$.

$ \begin{aligned} & \qquad=\frac{1}{3} \pi r^{2} h \\ & \text{ Volume of cone } \\ & =[\frac{1}{3} \times \pi \times(12)^{2} \times 5] cm^{3} \\ & =240 \pi cm^{3} \\ & \qquad=\frac{100 \pi}{240 \pi} \\ & \text{ Reauired ratio } \\ & =\frac{5}{12}=5: 12 \end{aligned} $

9. A heap of wheat is in the form of a cone whose diameter is $10.5 \mathrm{~m}$ and height is $3 \mathrm{~m}$. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.

Show Answer

Solution

Radius ( $r$ ) of heap

$ =(\frac{10.5}{2}) m=5.25 m $

Height ( $h$ ) of heap $=3 m$

Volume of heap

$ =\frac{1}{3} \pi r^{2} h $

$=(\frac{1}{3} \times \frac{22}{7} \times(5.25)^{2} \times 3) m^{3}$

$=86.625 m^{3}$

Therefore, the volume of the heap of wheat is $86.625 m^{3}$.

Area of canvas required $=$ CSA of cone

$ \begin{aligned} & =\pi r l=\pi r \sqrt{r^{2}+h^{2}} \\ & =[\frac{22}{7} \times 5.25 \times \sqrt{(5.25)^{2}+(3)^{2}}] m^{2} \\ & =(\frac{22}{7} \times 5.25 \times 6.05) m^{2} \\ & =99.825 m^{2} \end{aligned} $

Therefore, $99.825 m^{2}$ canvas will be required to protect the heap from rain.

Find the volume of a sphere whose radius is

(i) $7 cm$ (ii) $0.63 m$

Assume $.\pi=\frac{22}{7}]$



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ