Chapter 11 Surface Areas and Volumes Exercise-04

EXERCISE 11.4

Assume $\pi=\frac{22}{7}$ , unless stated otherwise.

1. Find the volume of a sphere whose radius is

(i) $7 \mathrm{~cm}$

(ii) $0.63 \mathrm{~m}$

Show Answer

Solution

(i) Radius of sphere $=7 cm$

Volume of sphere $=^{\frac{4}{3} \pi r^{3}}$ $=[\frac{4}{3} \times \frac{22}{7} \times(7)^{3}] cm^{3}$ $=(\frac{4312}{3}) cm^{3}$ $=1437 \frac{1}{3} cm^{3}$

Therefore, the volume of the sphere is $1437 \frac{1}{3} cm^{3}$.

(ii) Radius of sphere $=0.63 m$

$\frac{4}{3} \pi r^{3}$

Volume of sphere $=$

$=[\frac{4}{3} \times \frac{22}{7} \times(0.63)^{3}] m^{3}$

$=1.0478 m^{3}$

Therefore, the volume of the sphere is $1.05 m^{3}$ (approximately).

2. Find the amount of water displaced by a solid spherical ball of diameter

(i) $28 \mathrm{~cm}$

(ii) $0.21 \mathrm{~m}$

Show Answer

Solution

(i) Radius ( $r$ ) of ball $=$

$(\frac{28}{2}) cm=14 cm$

Volume of ball $=\frac{4}{3} \pi r^{3}$

$=[\frac{4}{3} \times \frac{22}{7} \times(14)^{3}] cm^{3}$

$=11498 \frac{2}{3} cm^{3}$

Therefore, the volume of the sphere is $11498 \frac{2}{3} cm^{3}$.

$ \begin{aligned} & \text{ (ii)Radius ( } r \text{ ) of ball }=\frac{(\frac{0.21}{2}) m}{\frac{4}{3} \pi r^{3}}=0.105 m \\ & \text{ Volume of ball }= \\ & =[\frac{4}{3} \times \frac{22}{7} \times(0.105)^{3}] m^{3} \\ & =0.004851 m^{3} \end{aligned} $

Therefore, the volume of the sphere is $0.004851 m^{3}$.

3. The diameter of a metallic ball is $4.2 \mathrm{~cm}$. What is the mass of the ball, if the density of the metal is $8.9 \mathrm{~g}_{\text {per }} \mathrm{cm}^{3}$ ?

Show Answer

Solution

$ (\frac{4.2}{2}) cm=2.1 cm $

Radius ( $r$ ) of metallic ball

Volume of metallic ball $=$

$ \frac{4}{3} \pi r^{3} $

$=[\frac{4}{3} \times \frac{22}{7} \times(2.1)^{3}] cm^{3}$

$=38.808 cm^{3}$

Density $=\frac{\text{ Mass }}{\text{ Volume }}$

Mass $=$ Density $\times$ Volume

$=(8.9 \times 38.808) g$

$=345.3912 g$

Hence, the mass of the ball is $345.39 g$ (approximately).

4. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?

Show Answer

Solution

$ \frac{d}{2} $

Let the diameter of earth be $d$. Therefore, the radius of earth will be

Diameter of moon will be $\frac{\frac{d}{4}}{}$ and the radius of moon will be $\frac{d}{8}$.

Volume of moon $=$

$ \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(\frac{d}{8})^{3}=\frac{1}{512} \times \frac{4}{3} \pi d^{3} $

$ \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(\frac{d}{2})^{3}=\frac{1}{8} \times \frac{4}{3} \pi d^{3} $

$\frac{\text{ Volume of moon }}{\text{ Volume of earth }}=\frac{\frac{1}{512} \times \frac{4}{3} \pi d^{3}}{\frac{1}{8} \times \frac{4}{3} \pi d^{3}}$

$ =\frac{1}{64} $

$\Rightarrow$ Volume of moon $=\frac{1}{64}$ Volume of earth

Therefore, the volume of moon is $\frac{1}{64}$ of the volume of earth.

5. How many litres of milk can a hemispherical bowl of diameter $10.5 \mathrm{~cm}$ hold?

Show Answer

Solution

$ (\frac{10.5}{2}) cm $

Volume of hemispherical bowl $=\frac{2}{3} \pi r^{3}$

$=[\frac{2}{3} \times \frac{22}{7} \times(5.25)^{3}] cm^{3}$

$=303.1875 cm^{3}$

$(\frac{303.1875}{1000})$ litre

Capacity of the bowl $=$

$=0.3031875$ litre $=0.303$ litre (approximately)

$=5.25 cm$

Radius ( $r$ ) of hemispherical bowl $=$

Therefore, the volume of the hemispherical bowl is 0.303 litre.

6. A hemispherical tank is made up of an iron sheet $1 \mathrm{~cm}$ thick. If the inner radius is $1 \mathrm{~m}$, then find the volume of the iron used to make the tank.

Show Answer

Solution

Inner radius $(r_1)$ of hemispherical tank $=1 m$ Thickness of

$ \begin{aligned} & \Rightarrow 4 n r^{2}=154 cm^{2} \\ & \Rightarrow r^{2}=(\frac{154 \times 7}{4 \times 22}) cm^{2} \\ & \Rightarrow r=(\frac{7}{2}) cm=3.5 cm \\ & \text{ Volume of sphere }= \\ & =[\frac{4}{3} \times \frac{22}{7} \times(3.5)^{3}] cm^{3} \\ & =179 \frac{2}{3} cm^{3} \\ & \text{ hemispherical tank }=1 cm=0.01 m \\ & \text{ Outer radius }(r_2) \text{ of hemispherical tank }=(1+0.01) m=1.01 m \\ & \text{ Volume of iron used to make such a tank } \pi=\frac{2}{3}(r_2^{3}-r_1^{3}) \\ & =[\frac{2}{3} \times \frac{22}{7} \times{(1.01)^{3}-(1)^{3}}] m^{3} \\ & =[\frac{44}{21} \times(1.030301-1)] m^{3} \\ & =0.06348 m^{3} \quad \text{ (approximately) } \end{aligned} $

7. Find the volume of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.

Show Answer

Solution

Let radius of sphere be $r$.

Surface area of sphere $=154 cm^{2}$

Therefore, the volume of the sphere is $179 \frac{2}{3} cm^{3}$.

8. A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of ₹ 4989.60. If the cost of white-washing is ₹ 20 per square metre, find the

(i) inside surface area of the dome,

(ii) volume of the air inside the dome.

Show Answer

Solution

(i) Cost of white-washing the dome from inside $=$ Rs 498.96

Cost of white-washing $1 m^{2}$ area $=$ Rs 2

Therefore, CSA of the inner side of dome $=(\frac{498.96}{2}) m^{2}$

$=249.48 m^{2}$

(ii) Let the inner radius of the hemispherical dome be $r$.

CSA of inner side of dome $=249.48 m^{2}$

$2 \pi r^{2}=249.48 m^{2}$

$ \begin{aligned} & \Rightarrow 2 \times \frac{22}{7} \times r^{2}=249.48 m^{2} \\ & \Rightarrow r^{2}=(\frac{249.48 \times 7}{2 \times 22}) m^{2}=39.69 m^{2} \end{aligned} $

$\Rightarrow r=6.3 m$

Volume of air inside the dome $=$ Volume of hemispherical dome

$=\frac{2}{3} \pi r^{3}$

$=[\frac{2}{3} \times \frac{22}{7} \times(6.3)^{3}] m^{3}$

$=523.908 m^{3}$

$=523.9 m^{3}$ (approximately)

Therefore, the volume of air inside the dome is $523.9 m^{3}$.

9. Twenty seven solid iron spheres, each of radius $r$ and surface area $\mathrm{S}$ are melted to form a sphere with surface area $\mathrm{S}^{\prime}$. Find the

(i) radius $r^{\prime}$ of the new sphere,

(ii) ratio of $\mathrm{S}$ and $\mathrm{S}^{\prime}$.

Show Answer

Solution

(i)Radius of 1 solid iron sphere $=r$

Volume of 1 solid iron sphere

$ \begin{aligned} = & \frac{4}{3} \pi r^{3} \\ & =27 \times \frac{4}{3} \pi r^{3} \end{aligned} $

Volume of 27 solid iron spheres

27 solid iron spheres are melted to form 1 iron sphere. Therefore, the volume of this iron sphere will be equal to the volume of 27 solid iron spheres. Let the radius of this new sphere be $r^{\prime}$.

Volume of new solid iron sphere $=\frac{4}{3} \pi r^{3}$

$ \begin{aligned} & \frac{4}{3} \pi r^{\prime 3}=27 \times \frac{4}{3} \pi r^{3} \\ & r^{\prime 3}=27 r^{3} \\ & r^{\prime}=3 r \end{aligned} $

(ii) Surface area of 1 solid iron sphere of radius $r=4 \pi r^{2}$

Surface area of iron sphere of radius $r^{\prime}=4 \pi(r^{\prime})^{2}$

$ \begin{aligned} & =4 n(3 r)^{2}=36 n r^{2} \\ & \frac{S}{S^{\prime}}=\frac{4 \pi r^{2}}{36 \pi r^{2}}=\frac{1}{9}=1: 9 \end{aligned} $

10. A capsule of medicine is in the shape of a sphere of diameter $3.5 \mathrm{~mm}$. How much medicine (in $\mathrm{mm}^{3}$ ) is needed to fill this capsule?

Show Answer

Solution

$ =(\frac{3.5}{2}) mm=1.75 mm $

Radius ( $r$ ) of capsule

Volume of spherical capsule $=\frac{4}{3} \pi r^{3}$

$ \begin{aligned} & =[\frac{4}{3} \times \frac{22}{7} \times(1.75)^{3}] mm^{3} \\ & =22.458 mm^{3} \\ & =22.46 mm^{3} \text{ (approximately) } \end{aligned} $

Therefore, the volume of the spherical capsule is $22.46 mm^{3}$.



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें