Chapter 02 Polynomials Exercise-02

EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) $x^{2}-2 x-8$

(ii) $4 s^{2}-4 s+1$

(iii) $6 x^{2}-3-7 x$

(iv) $4 u^{2}+8 u$

(v) $t^{2}-15$

(vi) $3 x^{2}-x-4$

Show Answer

Solution

$$ \begin{equation*} x^{2}-2 x-8=(x-4)(x+2) \tag{i} \end{equation*} $$

The value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$, i.e., when $x=4$ or $x=-2$

Therefore, the zeroes of $x^{2}-2 x-8$ are 4 and -2 .

Sum of zeroes $=4-2=2=\dfrac{-(-2)}{1}=\dfrac{-(\text{ Coefficient of } x)}{\text{ Coefficient of } x^{2}}$

Product of zeroes $=4 \times(-2)=-8=\dfrac{(-8)}{1}=\dfrac{\text{ Constant term }}{\text{ Coefficient of } x^{2}}$

(ii) $4 s^{2}-4 s+1=(2 s-1)^{2}$

The value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, i.e., $\quad s=\dfrac{1}{2}$

Therefore, the zeroes of $4 s^{2}-4 s+1$ are $\dfrac{1}{2}$ and $\dfrac{1}{2}$.

Sum of zeroes $=\dfrac{1}{2}+\dfrac{1}{2}=1=\dfrac{-(-4)}{4}=\dfrac{-(\text{ Coefficient of } s)}{(\text{ Coefficient of } s^{2})}$

Product of zeroes $=\dfrac{1}{2} \times \dfrac{1}{2}=\dfrac{1}{4}=\dfrac{\text{ Constant term }}{\text{ Coefficient of } s^{2}}$

$$ \begin{equation*} 6 x^{2}-3-7 x=6 x^{2}-7 x-3=(3 x+1)(2 x-3) \tag{iii} \end{equation*} $$

The value of $6 x^{2}-3-7 x$ is zero when $3 x+1=0$ or $2 x-3=0$, i.e., $x=\dfrac{-1}{3}$ or $x=\dfrac{3}{2}$

Therefore, the zeroes of $6 x^{2}-3-7 x$ are $\dfrac{-1}{3}$ and $\dfrac{3}{2}$.

Sum of zeroes $=\dfrac{-1}{3}+\dfrac{3}{2}=\dfrac{7}{6}=\dfrac{-(-7)}{6}=\dfrac{-(\text{ Coefficient of } x)}{\text{ Coefficient of } x^{2}}$

Product of zeroes $=\dfrac{-1}{3} \times \dfrac{3}{2}=\dfrac{-1}{2}=\dfrac{-3}{6}=\dfrac{\text{ Constant term }}{\text{ Coefficient of } x^{2}}$

(iv) $4 u^{2}+8 u=4 u^{2}+8 u+0$

$=4 u(u+2)$

The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$, i.e., $u=0$ or $u=-2$

Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .

Sum of zeroes $=0+(-2)=-2=\dfrac{-(8)}{4}=\dfrac{-(\text{ Coefficient of } u)}{\text{ Coefficient of } u^{2}}$

Product of zeroes $=0 \times(-2)=0=\dfrac{0}{4}=\dfrac{\text{ Constant term }}{\text{ Coefficient of } u^{2}}$

(v) $t^{2}-15$

$ \begin{aligned} & =t^{2}-0 t-15 \\ & =(t-\sqrt{15})(t+\sqrt{15}) \end{aligned} $

The value of $t^{2}-15$ is zero when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) $\dfrac{1}{4},-1$

(ii) $\sqrt{2}, \dfrac{1}{3}$

(iii) $0, \sqrt{5}$

(iv) 1,1

(v) $-\dfrac{1}{4}, \dfrac{1}{4}$

(vi) 4,1

Show Answer

Solution

(i)

$ \dfrac{1}{4},-1 $

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be $\alpha$ and $\beta$. $\alpha+\beta=\dfrac{1}{4}=\dfrac{-b}{a}$

$\alpha \beta=-1=\dfrac{-4}{4}=\dfrac{c}{a}$

If $a=4$, then $b=-1, c=-4$

Therefore, the quadratic polynomial is $4 x^{2}-x$ - 4 .

(ii) $\sqrt{2}, \dfrac{1}{3}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be $\alpha$ and $\beta$.

$\alpha+\beta=\sqrt{2}=\dfrac{3 \sqrt{2}}{3}=\dfrac{-b}{a}$

$\alpha \beta=\dfrac{1}{3}=\dfrac{c}{a}$

If $a=3$, then $b=-3 \sqrt{2}, c=1$

Therefore, the quadratic polynomial is $3 x^{2}-3 \sqrt{2} x+1$.

(iii) $0, \sqrt{5}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be $\alpha$ and $\beta$.

$\alpha+\beta=0=\dfrac{0}{1}=\dfrac{-b}{a}$

$\alpha \times \beta=\sqrt{5}=\dfrac{\sqrt{5}}{1}=\dfrac{c}{a}$

If $a=1$, then $b=0, c=\sqrt{5}$

Therefore, the quadratic polynomial is $x^{2}+\sqrt{5}$.

(iv) 1,1

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be $\alpha$ and $\beta$.

$\alpha+\beta=1=\dfrac{1}{1}=\dfrac{-b}{a}$

$\alpha \times \beta=1=\dfrac{1}{1}=\dfrac{c}{a}$

If $a=1$, then $b=-1, c=1$

Therefore, the quadratic polynomial is $x^{2}-x+1$.

(v) $-\dfrac{1}{4}, \dfrac{1}{4}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be $\alpha$ and



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ