Chapter 08 Introduction to Trigonometry Exercise-01

EXERCISE 8.1

1. In ABC, right-angled at B,AB=24cm,BC=7cm. Determine :

(i) sinA,cosA

(ii) sinC,cosC

Show Answer

Solution

Applying Pythagoras theorem for ABC, we obtain

AC2=AB2+BC2

=(24cm)2+(7cm)2

=(576+49)cm2

=625cm2

AC=625cm=25cm

(i) sinA= Side opposite to A Hypotenuse =BCAC

=725

cosA=

 Side adjacent to A Hypotenuse =ABAC=2425

(ii)

sinC= Side opposite to C Hypotenuse =ABAC=2425

 Side adjacent to C Hypotenuse =BCACcosC==725

2. In Fig. 8.13, find tan PcotR.

Fig. 8.13

Show Answer

Solution

Applying Pythagoras theorem for PQR, we obtain

PR2=PQ2+QR2

(13cm)2=(12cm)2+QR2

169cm2=144cm2+QR2

25cm2=QR2

QR=5cm

tanP= Side opposite to P Side adjacent to P=QRPQ=512

cotR= Side adjacent to R Side opposite to R=QRPQ=512

tanPcotR=512512=0

3. If sinA=34, calculate cosA and tanA.

Show Answer

Solution

Let ABC be a right-angled triangle, right-angled at point B.

Given that,

sinA=34BCAC=34

Let BC be 3k. Therefore, AC will be 4k, where k is a positive integer.

Applying Pythagoras theorem in ABC, we obtain

AC2=AB2+BC2

(4k)2=AB2+(3k)2

16k29k2=AB2

7k2=AB2

AB=7k

cosA= Side adjacent to A Hypotenuse 

=ABAC=7k4k=74

tanA= Side opposite to A Side adjacent to A

=BCAB=3k7k=37

4. Given 15cotA=8, find sinA and secA.

Show Answer

Solution

Consider a right-angled triangle, right-angled at B.

cotA= Side adjacent to A Side opposite to A

=ABBC

It is given that,

cotA=815ABBC=815

Let AB be 8k.Therefore, BC will be 15k, where k is a positive integer.

Applying Pythagoras theorem in ABC, we obtain

AC2=AB2+BC2

=(8k)2+(15k)2

=64k2+225k2

=289k2

AC=17k

sinA= Side opposite to A Hypotenuse =BCAC=15k17k=1517

secA= Hypotenuse  Side adjacent to A

=ACAB=178

5. Given secθ=1312, calculate all other trigonometric ratios.

Show Answer

Solution

Consider a right-angle triangle ABC, right-angled at point B.

secθ= Hypotenuse  Side adjacent to θ

1312=ACAB

If AC is 13k,AB will be 12k, where k is a positive integer.

Applying Pythagoras theorem in ABC, we obtain

(AC)2=(AB)2+(BC)2

(13k)2=(12k)2+(BC)2

169k2=144k2+BC2

25k2=BC2

BC=5k

sinθ= Side opposite to θ Hypotenuse =BCAC=5k13k=513

cosθ= Side adjacent to θ Hypotenuse =ABAC=12k13k=1213

tanθ= Side opposite to θ Side adjacent to θ=BCAB=5k12k=512

cotθ= Side adjacent to θ Side opposite to θ=ABBC=12k5k=125

cosecθ= Hypotenuse  Side opposite to θ=ACBC=13k5k=135

6. If A and B are acute angles such that cosA=cosB, then show that A=B.

Show Answer

Solution

Let us consider a triangle ABC in which CDAB.

It is given that

cosA=cosB ADAC=BDBC

We have to prove A=B. To prove this, let us extend AC to P such that BC=CP.

From equation (1), we obtain

ADBD=ACBC

ADBD=ACCP

(By construction, we have BC=CP )

By using the converse of B.P.T,

CDBP

ACD=CPB (Corresponding angles) ..

And, BCD=CBP (Alternate interior angles)

By construction, we have BC=CP.

CBP=CPB (Angle opposite to equal sides of a triangle) (5)

From equations (3), (4), and (5), we obtain

ACD=BCD.

In CAD and CBD,

ACD=BCD [Using equation (6)]

CDA=CDB[. Both 90 ]

Therefore, the remaining angles should be equal.

CAD=CBD

A=B

Alternatively,

Let us consider a triangle ABC in which CDAB.

It is given that,

cosA=cosB

ADAC=BDBC

ADBD=ACBC

Let ADBD=ACBC=k

AD=kBD.

And, AC=kBC

Using Pythagoras theorem for triangles CAD and CBD, we obtain

CD2=AC2AD2..

And, CD2=BC2BD2.

From equations (3) and (4), we obtain

AC2AD2=BC2BD2

(kBC)2(kBD)2=BC2BD2

k2(BC2BD2)=BC2BD2

k2=1

k=1

Putting this value in equation (2), we obtain

AC=BC

A=B (Angles opposite to equal sides of a triangle)

7. If cotθ=78, evaluate :

(i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ),

(ii) cot2θ

Show Answer

Solution

Let us consider a right triangle ABC, right-angled at point B.

cotθ= Side adjacent to θ Side opposite to θ=BCAB=78

If BC is 7k, then AB will be 8k, where k is a positive integer.

Applying Pythagoras theorem in ABC, we obtain

AC2=AB2+BC2

=(8k)2+(7k)2

=64k2+49k2

=113k2

AC=113k

sinθ= Side opposite to θ Hypotenuse =ABAC

=8k113k=8113

cosθ= Side adjacent to θ Hypotenuse =BCAC

=7k113k=7113

(i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=(1sin2θ)(1cos2θ) =1(8113)21(7113)2=164113149113

=4911364=4964

113

(ii) cot2θ=(cotθ)2=(78)2=4964

8. If 3cotA=4, check whether 1tan2A1+tan2A=cos2Asin2A or not.

Show Answer

Solution

It is given that 3cotA=4

Or, cotA=43

Consider a right triangle ABC, right-angled at point B.

cotA= Side adjacent to A Side opposite to A

ABBC=43

If AB is 4k, then BC will be 3k, where k is a positive integer.

In ABC,

(AC)2=(AB)2+(BC)2

=(4k)2+(3k)2

=16k2+9k2=25k2AC=5kcosA= Side adjacent to A Hypotenuse =ABAC=4k5k=45sinA= Side opposite to A Hypotenuse =BCAC=3k5k=35tanA= Side opposite to A Hypotenuse =BCAB=3k4k=341tan2A1+tan2A=1(34)21+(34)2=19161+916=7162516=725cos2Asin2A=(45)2(35)2=1625925=7251tan2A1+tan2A=cos2Asin2A

9. In triangle ABC, right-angled at B, if tanA=13, find the value of:

(i) sinAcosC+cosAsinC

(ii) cosAcosCsinAsinC

Show Answer

Solution

tanA=13

BCAB=13

If BC is k, then AB will be 3k, where k is a positive integer.

In ABC,

AC2=AB2+BC2

=(3k)2+(k)2

=3k2+k2=4k2

AC=2k

sinA= Side opposite to A Hypotenuse =BCAC=k2k=12

cosA= Side adjacent to A Hypotenuse =ABAC=3k2k=32

sinC= Side opposite to C Hypotenuse =ABAC=3k2k=32

cosC= Side adjacent to C Hypotenuse =BCAC=k2k=12

(i) sinAcosC+cosAsinC

=(12)(12)+(32)(32)=14+34=44=1

(ii) cosAcosCsinAsinC =(32)(12)(12)(32)=3434=0

10. In ΔPQR, right- angled at Q,PR+QR=25cm and PQ=5cm. Determine the values of sin P,cosP and tanP.

Show Answer

Solution

Given that, PR+QR=25

PQ=5

Let PR be x.

Therefore, QR=25x

Applying Pythagoras theorem in PQR, we obtain

PR2=PQ2+QR2

x2=(5)2+(25x)2

x2=25+625+x250x

50x=650

x=13

Therefore, PR=13cm

QR=(2513)cm=12cm

sinP= Side opposite to P Hypotenuse =QRPR=1213

cosP= Side adjacent to P Hypotenuse =PQPR=513

tanP= Side opposite to P Side adjacent to P=QRPQ=125

11. State whether the following are true or false. Justify your answer.

(i) The value of tanA is always less than 1.

(ii) sec A=125 for some value of angle A.

(iii) cosA is the abbreviation used for the cosecant of angle A.

(iv) cotA is the product of cot and A.

(v) sinθ=43 for some angle θ.

Show Answer

Solution

(i) Consider a ABC, right-angled at B.

tanA= Side opposite to A Side adjacent to A

=125

But 125>1

tanA>1

So, tanA<1 is not always true.

Hence, the given statement is false.

(ii)

secA=125

 Hypotenuse  Side adjacent to A=125

ACAB=125

Let AC be 12k,AB will be 5k, where k is a positive integer.

Applying Pythagoras theorem in ABC, we obtain

AC2=AB2+BC2

(12k)2=(5k)2+BC2

144k2=25k2+BC2

BC2=119k2

BC=10.9k

It can be observed that for given two sides AC=12k and AB=5k,

BC should be such that,

ACAB<BC<AC+AB

12k5k<BC<12k+5k

7k<BC<17k

However, BC=10.9k. Clearly, such a triangle is possible and hence, such value of sec A is possible.

Hence, the given statement is true.

(iii) Abbreviation used for cosecant of angle A is cosecA. And cosA is the abbreviation used for cosine of angle A.

Hence, the given statement is false.

(iv) cotA is not the product of cot and A. It is the cotangent of A.

Hence, the given statement is false.

(v) sinθ=43

We know that in a right-angled triangle,

sinθ= Side opposite to θ Hypotenuse 

In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of sinθ is not possible.

Hence, the given statement is false



Table of Contents