Chapter 08 Introduction to Trigonometry Exercise-01

EXERCISE 8.1

1. In $\triangle ABC$, right-angled at $B, AB=24 cm, BC=7 cm$. Determine :

(i) $\sin A, \cos A$

(ii) $\sin C, \cos C$

Show Answer

Solution

Applying Pythagoras theorem for $\triangle A B C$, we obtain

$A C^{2}=A B^{2}+B C^{2}$

$=(24 cm)^{2}+(7 cm)^{2}$

$=(576+49) cm^{2}$

$=625 cm^{2}$

$\therefore AC=\sqrt{625} cm=25 cm$

(i) $\sin A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC}$

$=\dfrac{7}{25}$

$\cos A=$

$\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{24}{25}$

(ii)

$ \begin{aligned} & \sin C=\dfrac{\text{ Side opposite to } \angle C}{\text{ Hypotenuse }}=\dfrac{AB}{AC} \\ & =\dfrac{24}{25} \end{aligned} $

$ \begin{aligned} & \dfrac{\text{ Side adjacent to } \angle C}{\text{ Hypotenuse }}=\dfrac{BC}{AC} \\ & \cos C= \\ & =\dfrac{7}{25} \end{aligned} $

2. In Fig. 8.13, find tan $P-\cot R$.

Fig. 8.13

Show Answer

Solution

Applying Pythagoras theorem for $\triangle PQR$, we obtain

$PR^{2}=PQ^{2}+QR^{2}$

$(13 cm)^{2}=(12 cm)^{2}+QR^{2}$

$169 cm^{2}=144 cm^{2}+QR^{2}$

$25 cm^{2}=QR^{2}$

$QR=5 cm$

$ \begin{aligned} \tan P & =\dfrac{\text{ Side opposite to } \angle P}{\text{ Side adjacent to } \angle P}=\dfrac{QR}{PQ} \\ & =\dfrac{5}{12} \end{aligned} $

$ \begin{aligned} \cot R & =\dfrac{\text{ Side adjacent to } \angle R}{\text{ Side opposite to } \angle R}=\dfrac{QR}{PQ} \\ & =\dfrac{5}{12} \end{aligned} $

$\tan P-\cot R=\dfrac{5}{12}-\dfrac{5}{12}=0$

3. If $\sin A=\dfrac{3}{4}$, calculate $\cos A$ and $\tan A$.

Show Answer

Solution

Let $\triangle A B C$ be a right-angled triangle, right-angled at point $B$.

Given that,

$ \begin{aligned} & \sin A=\dfrac{3}{4} \\ & \dfrac{BC}{AC}=\dfrac{3}{4} \end{aligned} $

Let $BC$ be $3 k$. Therefore, $AC$ will be $4 k$, where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle A B C$, we obtain

$A C^{2}=A B^{2}+B C^{2}$

$(4 k)^{2}=A B^{2}+(3 k)^{2}$

$16 k^{2}-9 k^{2}=AB^{2}$

$7 k^{2}=A B^{2}$

$AB=\sqrt{7} k$

$\cos A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}$

$=\dfrac{AB}{AC}=\dfrac{\sqrt{7 k}}{4 k}=\dfrac{\sqrt{7}}{4}$

$\tan A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Side adjacent to } \angle A}$

$=\dfrac{BC}{AB}=\dfrac{3 k}{\sqrt{7} k}=\dfrac{3}{\sqrt{7}}$

4. Given $15 \cot A=8$, find $\sin A$ and $\sec A$.

Show Answer

Solution

Consider a right-angled triangle, right-angled at $B$.

$\cot A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Side opposite to } \angle A}$

$=\dfrac{AB}{BC}$

It is given that,

$ \begin{aligned} \cot A & =\dfrac{8}{15} \\ \dfrac{AB}{BC} & =\dfrac{8}{15} \end{aligned} $

Let $A B$ be $8 k$.Therefore, $B C$ will be $15 k$, where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle A B C$, we obtain

$A C^{2}=A B^{2}+B C^{2}$

$=(8 k)^{2}+(15 k)^{2}$

$=64 k^{2}+225 k^{2}$

$=289 k^{2}$

$AC=17 k$

$ \begin{aligned} \sin A & =\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC} \\ & =\dfrac{15 k}{17 k}=\dfrac{15}{17} \end{aligned} $

$\sec A=\dfrac{\text{ Hypotenuse }}{\text{ Side adjacent to } \angle A}$

$ =\dfrac{AC}{AB}=\dfrac{17}{8} $

5. Given $\sec \theta=\dfrac{13}{12}$, calculate all other trigonometric ratios.

Show Answer

Solution

Consider a right-angle triangle $\triangle A B C$, right-angled at point $B$.

$\sec \theta=\dfrac{\text{ Hypotenuse }}{\text{ Side adjacent to } \angle \theta}$

$\dfrac{13}{12}=\dfrac{AC}{AB}$

If $AC$ is $13 k, AB$ will be $12 k$, where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$(A C)^{2}=(A B)^{2}+(B C)^{2}$

$(13 k)^{2}=(12 k)^{2}+(B C)^{2}$

$169 k^{2}=144 k^{2}+BC^{2}$

$25 k^{2}=BC^{2}$

$BC=5 k$

$\sin \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{B C}{A C}=\dfrac{5 k}{13 k}=\dfrac{5}{13}$

$\cos \theta=\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{12 k}{13 k}=\dfrac{12}{13}$

$\tan \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Side adjacent to } \angle \theta}=\dfrac{BC}{AB}=\dfrac{5 k}{12 k}=\dfrac{5}{12}$

$\cot \theta=\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Side opposite to } \angle \theta}=\dfrac{AB}{BC}=\dfrac{12 k}{5 k}=\dfrac{12}{5}$

$cosec \theta=\dfrac{\text{ Hypotenuse }}{\text{ Side opposite to } \angle \theta}=\dfrac{AC}{BC}=\dfrac{13 k}{5 k}=\dfrac{13}{5}$

6. If $\angle A$ and $\angle B$ are acute angles such that $\cos A=\cos B$, then show that $\angle A=\angle B$.

Show Answer

Solution

Let us consider a triangle $A B C$ in which $C D \perp A B$.

It is given that

$\cos A=\cos B$ $\Rightarrow \dfrac{AD}{AC}=\dfrac{BD}{BC}$

We have to prove $\angle A=\angle B$. To prove this, let us extend $A C$ to $P$ such that $B C=C P$.

From equation (1), we obtain

$\dfrac{AD}{BD}=\dfrac{AC}{BC}$

$\Rightarrow \dfrac{AD}{BD}=\dfrac{AC}{CP}$

(By construction, we have $BC=CP$ )

By using the converse of B.P.T,

$CD \mid BP$

$\Rightarrow \angle ACD=\angle CPB$ (Corresponding angles) ..

And, $\angle BCD=\angle CBP$ (Alternate interior angles)

By construction, we have $BC=CP$.

$\therefore \angle CBP=\angle CPB$ (Angle opposite to equal sides of a triangle) $\ldots$ (5)

From equations (3), (4), and (5), we obtain

$\angle ACD=\angle BCD$.

In $\triangle CAD$ and $\triangle CBD$,

$\angle ACD=\angle BCD$ [Using equation (6)]

$\angle CDA=\angle CDB[.$ Both $90^{\circ}$ ]

Therefore, the remaining angles should be equal.

$\therefore \angle CAD=\angle CBD$

$\Rightarrow \angle A=\angle B$

Alternatively,

Let us consider a triangle $A B C$ in which $C D \perp A B$.

It is given that,

$\cos A=\cos B$

$\Rightarrow \dfrac{AD}{AC}=\dfrac{BD}{BC}$

$\Rightarrow \dfrac{AD}{BD}=\dfrac{AC}{BC}$

Let $\dfrac{AD}{BD}=\dfrac{AC}{BC}=k$

$\Rightarrow AD=k BD$.

And, $AC=k BC$

Using Pythagoras theorem for triangles CAD and CBD, we obtain

$C D^{2}=A C^{2}-A D^{2}$..

And, $CD^{2}=BC^{2}-BD^{2}$.

From equations (3) and (4), we obtain

$A C^{2}-A D^{2}=B C^{2}-B D^{2}$

$\Rightarrow(k B C)^{2}-(k B D)^{2}=BC^{2}-BD^{2}$

$\Rightarrow k^{2}(BC^{2}-BD^{2})=BC^{2}-BD^{2}$

$\Rightarrow k^{2}=1$

$\Rightarrow k=1$

Putting this value in equation (2), we obtain

$AC=BC$

$\Rightarrow \angle A=\angle B$ (Angles opposite to equal sides of a triangle)

7. If $\cot \theta=\dfrac{7}{8}$, evaluate :

(i) $\dfrac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$,

(ii) $\cot ^{2} \theta$

Show Answer

Solution

Let us consider a right triangle $A B C$, right-angled at point $B$.

$ \begin{aligned} \cot \theta & =\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Side opposite to } \angle \theta}=\dfrac{BC}{AB} \\ & =\dfrac{7}{8} \end{aligned} $

If $BC$ is $7 k$, then $AB$ will be $8 k$, where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle A B C$, we obtain

$A C^{2}=A B^{2}+B C^{2}$

$=(8 k)^{2}+(7 k)^{2}$

$=64 k^{2}+49 k^{2}$

$=113 k^{2}$

$AC=\sqrt{113} k$

$\sin \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{AB}{AC}$

$=\dfrac{8 k}{\sqrt{113} k}=\dfrac{8}{\sqrt{113}}$

$\cos \theta=\dfrac{\text{ Side adjacent to } \angle \theta}{\text{ Hypotenuse }}=\dfrac{BC}{AC}$

$=\dfrac{7 k}{\sqrt{113} k}=\dfrac{7}{\sqrt{113}}$

(i) $\dfrac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\dfrac{(1-\sin ^{2} \theta)}{(1-\cos ^{2} \theta)}$ $=\dfrac{1-(\dfrac{8}{\sqrt{113}})^{2}}{1-(\dfrac{7}{\sqrt{113}})^{2}}=\dfrac{1-\dfrac{64}{113}}{1-\dfrac{49}{113}}$

$=\dfrac{\dfrac{49}{113}}{64}=\dfrac{49}{64}$

113

(ii) $\cot ^{2} \theta=(\cot \theta)^{2}=(\dfrac{7}{8})^{2}=\dfrac{49}{64}$

8. If $3 \cot A=4$, check whether $\dfrac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.

Show Answer

Solution

It is given that $3 \cot A=4$

Or, $\cot A=\dfrac{4}{3}$

Consider a right triangle $A B C$, right-angled at point $B$.

$\cot A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Side opposite to } \angle A}$

$\dfrac{AB}{BC}=\dfrac{4}{3}$

If $AB$ is $4 k$, then $BC$ will be $3 k$, where $k$ is a positive integer.

In $\triangle ABC$,

$(A C)^{2}=(A B)^{2}+(B C)^{2}$

$=(4 k)^{2}+(3 k)^{2}$

$ \begin{aligned} & =16 k^{2}+9 k^{2} \\ & =25 k^{2} \\ & A C=5 k \\ & \cos A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}=\dfrac{AB}{AC} \\ & =\dfrac{4 k}{5 k}=\dfrac{4}{5} \\ & \sin A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC} \\ & =\dfrac{3 k}{5 k}=\dfrac{3}{5} \\ & \tan A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AB} \\ & =\dfrac{3 k}{4 k}=\dfrac{3}{4} \\ & \dfrac{1-\tan ^{2} A}{1+\tan ^{2} A}=\dfrac{1-(\dfrac{3}{4})^{2}}{1+(\dfrac{3}{4})^{2}}=\dfrac{1-\dfrac{9}{16}}{1+\dfrac{9}{16}} \\ & =\dfrac{\dfrac{7}{16}}{\dfrac{25}{16}}=\dfrac{7}{25} \\ & \cos ^{2} A-\sin ^{2} A=(\dfrac{4}{5})^{2}-(\dfrac{3}{5})^{2} \\ & =\dfrac{16}{25}-\dfrac{9}{25}=\dfrac{7}{25} \\ & \therefore \dfrac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A \end{aligned} $

9. In triangle $A B C$, right-angled at $B$, if $\tan A=\dfrac{1}{\sqrt{3}}$, find the value of:

(i) $\sin A \cos C+\cos A \sin C$

(ii) $\cos A \cos C-\sin A \sin C$

Show Answer

Solution

$\tan A=\dfrac{1}{\sqrt{3}}$

$\dfrac{BC}{AB}=\dfrac{1}{\sqrt{3}}$

If $BC$ is $k$, then $AB$ will be $\sqrt{3} k$, where $k$ is a positive integer.

In $\triangle ABC$,

$A C^{2}=A B^{2}+BC^{2}$

$=(\sqrt{3} k)^{2}+(k)^{2}$

$=3 k^{2}+k^{2}=4 k^{2}$

$\therefore AC=2 k$

$\sin A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Hypotenuse }}=\dfrac{BC}{AC}=\dfrac{k}{2 k}=\dfrac{1}{2}$

$\cos A=\dfrac{\text{ Side adjacent to } \angle A}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{\sqrt{3} k}{2 k}=\dfrac{\sqrt{3}}{2}$

$\sin C=\dfrac{\text{ Side opposite to } \angle C}{\text{ Hypotenuse }}=\dfrac{AB}{AC}=\dfrac{\sqrt{3} k}{2 k}=\dfrac{\sqrt{3}}{2}$

$\cos C=\dfrac{\text{ Side adjacent to } \angle C}{\text{ Hypotenuse }}=\dfrac{BC}{AC}=\dfrac{k}{2 k}=\dfrac{1}{2}$

(i) $\sin A \cos C+\cos A \sin C$

$ \begin{aligned} & =(\dfrac{1}{2})(\dfrac{1}{2})+(\dfrac{\sqrt{3}}{2})(\dfrac{\sqrt{3}}{2})=\dfrac{1}{4}+\dfrac{3}{4} \\ & =\dfrac{4}{4}=1 \end{aligned} $

(ii) $\cos A \cos C-\sin A \sin C$ $=(\dfrac{\sqrt{3}}{2})(\dfrac{1}{2})-(\dfrac{1}{2})(\dfrac{\sqrt{3}}{2})=\dfrac{\sqrt{3}}{4}-\dfrac{\sqrt{3}}{4}=0$

10. In $\Delta PQR$, right- angled at $Q, PR+QR=25 cm$ and $PQ=5 cm$. Determine the values of sin $P, \cos P$ and $\tan P$.

Show Answer

Solution

Given that, $PR+QR=25$

$PQ=5$

Let PR be $x$.

Therefore, $QR=25-x$

Applying Pythagoras theorem in $\triangle PQR$, we obtain

$PR^{2}=PQ^{2}+QR^{2}$

$x^{2}=(5)^{2}+(25-x)^{2}$

$x^{2}=25+625+x^{2}-50 x$

$50 x=650$

$x=13$

Therefore, $PR=13 cm$

$QR=(25-13) cm=12 cm$

$\sin P=\dfrac{\text{ Side opposite to } \angle P}{\text{ Hypotenuse }}=\dfrac{QR}{PR}=\dfrac{12}{13}$

$\cos P=\dfrac{\text{ Side adjacent to } \angle P}{\text{ Hypotenuse }}=\dfrac{PQ}{PR}=\dfrac{5}{13}$

$\tan P=\dfrac{\text{ Side opposite to } \angle P}{\text{ Side adjacent to } \angle P}=\dfrac{QR}{PQ}=\dfrac{12}{5}$

11. State whether the following are true or false. Justify your answer.

(i) The value of $\tan A$ is always less than 1.

(ii) sec $A=\dfrac{12}{5}$ for some value of angle $A$.

(iii) $\cos A$ is the abbreviation used for the cosecant of angle $A$.

(iv) $\cot A$ is the product of cot and $A$.

(v) $\sin \theta=\dfrac{4}{3}$ for some angle $\theta$.

Show Answer

Solution

(i) Consider a $\triangle A B C$, right-angled at $B$.

$\tan A=\dfrac{\text{ Side opposite to } \angle A}{\text{ Side adjacent to } \angle A}$

$=\dfrac{12}{5}$

But $\dfrac{12}{5}>1$

$\therefore \tan A>1$

So, $\tan A<1$ is not always true.

Hence, the given statement is false.

(ii)

$ \sec A=\dfrac{12}{5} $

$\dfrac{\text{ Hypotenuse }}{\text{ Side adjacent to } \angle A}=\dfrac{12}{5}$

$\dfrac{AC}{AB}=\dfrac{12}{5}$

Let $A C$ be $12 k, A B$ will be $5 k$, where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle ABC$, we obtain

$A C^{2}=A B^{2}+B C^{2}$

$(12 k)^{2}=(5 k)^{2}+BC^{2}$

$144 k^{2}=25 k^{2}+BC^{2}$

$BC^{2}=119 k^{2}$

$BC=10.9 k$

It can be observed that for given two sides $AC=12 k$ and $AB=5 k$,

$B C$ should be such that,

$A C-A B<B C<A C+A B$

$12 k-5 k<BC<12 k+5 k$

$7 k<BC<17 k$

However, $BC=10.9 k$. Clearly, such a triangle is possible and hence, such value of sec $A$ is possible.

Hence, the given statement is true.

(iii) Abbreviation used for cosecant of angle $A$ is $cosec A$. And $\cos A$ is the abbreviation used for cosine of angle $A$.

Hence, the given statement is false.

(iv) $\cot A$ is not the product of $\cot$ and $A$. It is the cotangent of $\angle A$.

Hence, the given statement is false.

(v) $\sin \theta=\dfrac{4}{3}$

We know that in a right-angled triangle,

$ \sin \theta=\dfrac{\text{ Side opposite to } \angle \theta}{\text{ Hypotenuse }} $

In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.

Hence, the given statement is false



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ