Chapter 08 Introduction to Trigonometry Exercise-02

EXERCISE 8.2

1. Evaluate the following:

(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

(iii) $\dfrac{\cos 45^{\circ}}{\sec 30^{\circ}+cosec 30^{\circ}}$

(iv) $\dfrac{\sin 30^{\circ}+\tan 45^{\circ}-cosec 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

(v) $\dfrac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Show Answer

Solution

(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

$=(\dfrac{\sqrt{3}}{2})(\dfrac{\sqrt{3}}{2})+(\dfrac{1}{2})(\dfrac{1}{2})$

$=\dfrac{3}{4}+\dfrac{1}{4}=\dfrac{4}{4}=1$

(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

$=2(1)^{2}+(\dfrac{\sqrt{3}}{2})^{2}-(\dfrac{\sqrt{3}}{2})^{2}$

$=2+\dfrac{3}{4}-\dfrac{3}{4}=2$

(iii) $\dfrac{\cos 45^{\circ}}{\sec 30^{\circ}+cosec 30^{\circ}}$

$ \begin{aligned} & =\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2}{\sqrt{3}}+2}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2+2 \sqrt{3}}{\sqrt{3}}} \\ & =\dfrac{\sqrt{3}}{\sqrt{2}(2+2 \sqrt{3})}=\dfrac{\sqrt{3}}{2 \sqrt{2}+2 \sqrt{6}} \\ & =\dfrac{\sqrt{3}(2 \sqrt{6}-2 \sqrt{2})}{(2 \sqrt{6}+2 \sqrt{2})(2 \sqrt{6}-2 \sqrt{2})} \end{aligned} $

$=\dfrac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(2 \sqrt{6})^{2}-(2 \sqrt{2})^{2}}=\dfrac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{24-8}=\dfrac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{16}$

$=\dfrac{\sqrt{18}-\sqrt{6}}{8}=\dfrac{3 \sqrt{2}-\sqrt{6}}{8}$

$\dfrac{\sin 30^{\circ}+\tan 45^{\circ}-cosec 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

$=\dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1}=\dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{3}{2}+\dfrac{2}{\sqrt{3}}}$

$=\dfrac{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}}}{\dfrac{3 \sqrt{3}+4}{2 \sqrt{3}}}=\dfrac{(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)}$

$=\dfrac{(3 \sqrt{3}-4)(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)(3 \sqrt{3}-4)}=\dfrac{(3 \sqrt{3}-4)^{2}}{(3 \sqrt{3})^{2}-(4)^{2}}$

$=\dfrac{27+16-24 \sqrt{3}}{27-16}=\dfrac{43-24 \sqrt{3}}{11}$

(v) $\dfrac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

$ \begin{aligned} & =\dfrac{5(\dfrac{1}{2})^{2}+4(\dfrac{2}{\sqrt{3}})^{2}-(1)^{2}}{(\dfrac{1}{2})^{2}+(\dfrac{\sqrt{3}}{2})^{2}} \\ & =\dfrac{5(\dfrac{1}{4})+(\dfrac{16}{3})-1}{\dfrac{1}{4}+\dfrac{3}{4}} \\ & =\dfrac{\dfrac{15+64-12}{12}}{\dfrac{4}{4}}=\dfrac{67}{12} \end{aligned} $

2. Choose the correct option and justify your choice :

(i) $\dfrac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

(A) $\sin 60^{\circ}$

(B) $\cos 60^{\circ}$

(C) $\tan 60^{\circ}$

(D) $\sin 30^{\circ}$

(ii) $\dfrac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$

(A) $\tan 90^{\circ}$

(B) 1

(C) $\sin 45^{\circ}$

(D) 0

(iii) $\sin 2 A=2 \sin A$ is true when $A=$

(A) $0^{\circ}$

(B) $30^{\circ}$

(C) $45^{\circ}$

(D) $60^{\circ}$

(iv) $\dfrac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

(A) $\cos 60^{\circ}$

(B) $\sin 60^{\circ}$

(C) $\tan 60^{\circ}$

(D) $\sin 30^{\circ}$

Show Answer

Solution

(i) $\dfrac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$

$=\dfrac{2(\dfrac{1}{\sqrt{3}})}{1+(\dfrac{1}{\sqrt{3}})^{2}}=\dfrac{\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{4}{3}}$

$=\dfrac{6}{4 \sqrt{3}}=\dfrac{\sqrt{3}}{2}$

Out of the given alternatives, only

$ \sin 60^{\circ}=\dfrac{\sqrt{3}}{2} $

Hence, (A) is correct.

(ii) $\dfrac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}$

$=\dfrac{1-(1)^{2}}{1+(1)^{2}}=\dfrac{1-1}{1+1}=\dfrac{0}{2}=0$

Hence, (D) is correct.

(iii)Out of the given alternatives, only $A=0^{\circ}$ is correct.

As $\sin 2 A=\sin 0^{\circ}=0$

$2 \sin A=2 \sin 0^{\circ}=2(0)=0$

Hence, $(A)$ is correct.

(iv) $\dfrac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$

$=\dfrac{2(\dfrac{1}{\sqrt{3}})}{1-(\dfrac{1}{\sqrt{3}})^{2}}=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}$

$=\sqrt{3}$

Out of the given alternatives, only $\tan 60^{\circ}=\sqrt{3}$

Hence, (C) is correct.

3. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\dfrac{1}{\sqrt{3}} ; 0^{\circ}<A+B \leq 90^{\circ} ; A>B$, find $A$ and $B$.

Show Answer

Solution

$\tan (A+B)=\sqrt{3}$

$\Rightarrow \tan (A+B)=\tan 60$

$\Rightarrow A+B=60 \ldots$ (1)

$\tan (A-B)=\dfrac{1}{\sqrt{3}}$

$\Rightarrow \tan (A-B)=\tan 30$

$\Rightarrow A-B=30$..

On adding both equations, we obtain

$2 A=90$

$\Rightarrow A=45$

From equation (1), we obtain

$45+B=60$

$B=15$

Therefore, $\angle A=45^{\circ}$ and $\angle B=15^{\circ}$

4. State whether the following are true or false. Justify your answer.

(i) $\sin (A+B)=\sin A+\sin B$.

(ii) The value of $\sin \theta$ increases as $\theta$ increases.

(iii) The value of $\cos \theta$ increases as $\theta$ increases.

(iv) $\sin \theta=\cos \theta$ for all values of $\theta$.

(v) $\cot A$ is not defined for $A=0^{\circ}$.

Show Answer

Solution

(i) $\sin (A+B)=\sin A+\sin B$

Let $A=30^{\circ}$ and $B=60^{\circ}$

$\sin (A+B)=\sin (30^{\circ}+60^{\circ})$

$=\sin 90^{\circ}$

$=1$

$\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$

$=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}=\dfrac{1+\sqrt{3}}{2}$

Clearly, $\sin (A+B) \neq \sin A+\sin B$

Hence, the given statement is false.

(ii) The value of $\sin \theta$ increases as $\theta$ increases in the interval of $0^{\circ}<\theta<90^{\circ}$ as

$\sin 0^{\circ}=0$

$\sin 30^{\circ}=\dfrac{1}{2}=0.5$

$\sin 45^{\circ}=\dfrac{1}{\sqrt{2}}=0.707$

$\sin 60^{\circ}=\dfrac{\sqrt{3}}{2}=0.866$

$\sin 90^{\circ}=1$

Hence, the given statement is true.

(iii) $\cos 0^{\circ}=1$

$\cos 30^{\circ}=\dfrac{\sqrt{3}}{2}=0.866$

$\cos 45^{\circ}=\dfrac{1}{\sqrt{2}}=0.707$

$\cos 60^{\circ}=\dfrac{1}{2}=0.5$

$\cos 90^{\circ}=0$

It can be observed that the value of $\cos \theta$ does not increase in the interval of $0^{\circ}<\theta<90^{\circ}$.

Hence, the given statement is false.

(iv) $\sin \theta=\cos \theta$ for all values of $\theta$.

This is true when $\theta=45^{\circ}$

$ \begin{aligned} & \sin 45^{\circ}=\dfrac{1}{\sqrt{2}} \\ & \text{ As } \\ & \cos 45^{\circ}=\dfrac{1}{\sqrt{2}} \end{aligned} $

It is not true for all other values of $\theta$.

As $\sin 30^{\circ}=\dfrac{1}{2}$ and $\cos 30^{\circ}=\dfrac{\sqrt{3}}{2}$,

Hence, the given statement is false.

(v) $\cot A$ is not defined for $A=0^{\circ}$

$ \begin{aligned} & \text{ As } \cot A=\dfrac{\cos A}{\sin A} \\ & \cot 0^{\circ}=\dfrac{\cos 0^{\circ}}{\sin 0^{\circ}}=\dfrac{1}{0}=\text{ undefined } \end{aligned} $

Hence, the given statement is true.



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ