Chapter 08 Introduction to Trigonometry Exercise-03

EXERCISE 8.3

1. Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of $\cot A$.

Show Answer

Solution

We know that,

$cosec^{2} A=1+\cot ^{2} A$

$\dfrac{1}{cosec^{2} A}=\dfrac{1}{1+\cot ^{2} A}$

$\sin ^{2} A=\dfrac{1}{1+\cot ^{2} A}$

$\sin A= \pm \dfrac{1}{\sqrt{1+\cot ^{2} A}}$

$\sqrt{1+\cot ^{2} A}$ will always be positive as we are adding two positive quantities.

Therefore, $\sin A=\dfrac{1}{\sqrt{1+\cot ^{2} A}}$

We know that, $\tan A=\dfrac{\sin A}{\cos A}$

However, $\cot A=\dfrac{\cos A}{\sin A}$

Therefore, $\tan A=\dfrac{1}{\cot A}$

Also, $\sec ^{2} A=1+\tan ^{2} A$

$=1+\dfrac{1}{\cot ^{2} A}$

$=\dfrac{\cot ^{2} A+1}{\cot ^{2} A}$

$\sec A=\dfrac{\sqrt{\cot ^{2} A+1}}{\cot A}$

2. Write all the other trigonometric ratios of $\angle A$ in terms of sec $A$.

Show Answer

Solution

We know that,

$\cos A=\dfrac{1}{\sec A}$

Also, $\sin ^{2} A+\cos ^{2} A=1$

$\sin ^{2} A=1-\cos ^{2} A$

$ \begin{aligned} \sin A & =\sqrt{1-(\dfrac{1}{\sec A})^{2}} \\ & =\sqrt{\dfrac{\sec ^{2} A-1}{\sec ^{2} A}}=\dfrac{\sqrt{\sec ^{2} A-1}}{\sec A} \end{aligned} $

$\tan ^{2} A+1=\sec ^{2} A$

$\tan ^{2} A=\sec ^{2} A-1$

$ \begin{aligned} \tan A & =\sqrt{\sec ^{2} A-1} \\ \cot A & =\dfrac{\cos A}{\sin A}=\dfrac{\dfrac{1}{\sec A}}{\dfrac{\sqrt{\sec ^{2} A-1}}{\sec A}} \\ & =\dfrac{1}{\sqrt{\sec ^{2} A-1}} \end{aligned} $

$cosec A=\dfrac{1}{\sin A}=\dfrac{\sec A}{\sqrt{\sec ^{2} A-1}}$

3. Choose the correct option. Justify your choice.

(i) $9 \sec ^{2} A-9 \tan ^{2} A=$

(A) 1

(B) 9

(C) 8

(D) 0

(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-cosec \theta)=$

(A) 0

(B) 1

(C) 2

(D) -1

(iii) $(\sec A+\tan A)(1-\sin A)=$

(A) $\sec A$

(B) $\sin A$

(C) $cosec A$

(D) $\cos A$

(iv) $\dfrac{1+\tan ^{2} A}{1+\cot ^{2} A}=$

(A) $\sec ^{2} A$

(B) -1

(C) $\cot ^{2} A$

(D) $\tan ^{2} A$

Show Answer

Solution

(i) $9 \sec ^{2} A-9 \tan ^{2} A$

$=9(\sec ^{2} A-\tan ^{2} A)$

$=9$ (1) [As $.\sec ^{2} A-\tan ^{2} A=1]$

$=9$

Hence, alternative (B) is correct.

(ii)

$ \begin{aligned} & (1+\tan \theta+\sec \theta)(1+\cot \theta-cosec \theta) \\ & =(1+\dfrac{\sin \theta}{\cos \theta}+\dfrac{1}{\cos \theta})(1+\dfrac{\cos \theta}{\sin \theta}-\dfrac{1}{\sin \theta}) \\ & =(\dfrac{\cos \theta+\sin \theta+1}{\cos \theta})(\dfrac{\sin \theta+\cos \theta-1}{\sin \theta}) \\ & =\dfrac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta} \\ & =\dfrac{\sin \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\ & =\dfrac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\ & =\dfrac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2 \end{aligned} $

Hence, alternative (C) is correct.

(iii) $(\sec A+\tan A)(1-\sin A)$

$ \begin{aligned} & =(\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A})(1-\sin A) \\ & =(\dfrac{1+\sin A}{\cos A})(1-\sin A) \\ & =\dfrac{1-\sin ^{2} A}{\cos A}=\dfrac{\cos ^{2} A}{\cos A} \\ & =\cos A \end{aligned} $

Hence, alternative (D) is correct.

(iv)

$ \dfrac{1+\tan ^{2} A}{1+\cot ^{2} A}=\dfrac{1+\dfrac{\sin ^{2} A}{\cos ^{2} A}}{1+\dfrac{\cos ^{2} A}{\sin ^{2} A}} $

$ =\dfrac{\dfrac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\dfrac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}=\dfrac{\dfrac{1}{\cos ^{2} A}}{\dfrac{1}{\sin ^{2} A}} $

$=\dfrac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A$

Hence, alternative (D) is correct.

4. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) $(cosec \theta-\cot \theta)^{2}=\dfrac{1-\cos \theta}{1+\cos \theta}$

(ii) $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2 \sec A$

(iii) $\dfrac{\tan \theta}{1-\cot \theta}+\dfrac{\cot \theta}{1-\tan \theta}=1+\sec \theta cosec \theta$

[Hint : Write the expression in terms of $\sin \theta$ and $\cos \theta$ ]

(iv) $\dfrac{1+\sec A}{\sec A}=\dfrac{\sin ^2 A}{1-\cos A}$

[Hint : Simplify LHS and RHS separately]

(v) $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$, wsing the identity $\operatorname{cosec}^2 A=1+\cot ^2 A$.

(vi) $\sqrt{\dfrac{1+\sin A}{1-\sin A}}=\sec A+\tan A$

(vii) $\dfrac{\sin \theta-2 \sin ^3 \theta}{2 \cos ^3 \theta-\cos \theta}=\tan \theta$

(viii) $(\sin \mathrm{A}+\operatorname{cosec} \mathrm{A})^2+(\cos \mathrm{A}+\sec \mathrm{A})^2=7+\tan ^2 \mathrm{~A}+\cot ^2 \mathrm{~A}$

(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\dfrac{1}{\tan A+\cot A}$

[Hint : Simplify LHS and RHS separately]

(x) $\left(\dfrac{1+\tan ^2 A}{1+\cot ^2 A}\right)=\left(\dfrac{1-\tan A}{1-\cot A}\right)^2-\tan ^2 A$

Show Answer

Solution

(i)

$(cosec \theta-\cot \theta)^{2}=\dfrac{1-\cos \theta}{1+\cos \theta}$

L.H.S. $=(cosec \theta-\cot \theta)^{2}$

$=(\dfrac{1}{\sin \theta}-\dfrac{\cos \theta}{\sin \theta})^{2}$

$=\dfrac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}=\dfrac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$

$=\dfrac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\dfrac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\dfrac{1-\cos \theta}{1+\cos \theta}$

$=$ R.H.S.

(ii)

$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2 \sec A$

L.H.S. $=\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}$

$=\dfrac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}$

$=\dfrac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}$

$=\dfrac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}$

$=\dfrac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\dfrac{2+2 \sin A}{(1+\sin A)(\cos A)}$

$=\dfrac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\dfrac{2}{\cos A}=2 \sec A$

$=$ R.H.S.

(iii) $\dfrac{\tan \theta}{1-\cot \theta}+\dfrac{\cot \theta}{1-\tan \theta}=1+\sec \theta cosec \theta$

$ \begin{aligned} \text{ L.H.S. } & =\dfrac{\tan \theta}{1-\cot \theta}+\dfrac{\cot \theta}{1-\tan \theta} \\ & =\dfrac{\dfrac{\sin \theta}{\cos \theta}}{1-\dfrac{\cos \theta}{\sin \theta}}+\dfrac{\dfrac{\cos \theta}{\sin \theta}}{1-\dfrac{\sin \theta}{\cos \theta}} \\ & =\dfrac{\dfrac{\cos \theta}{\cos \theta - \sin \theta}}{\cos \theta} by \dfrac{\dfrac{\cos \theta}{\sin \theta}{\cos \theta - \sin \theta}}{\cos \theta}\\ = & \dfrac{\sin ^{2} \theta}{\cos \theta(\sin ^{2} \theta-\cos \theta)}-\dfrac{\cos ^{2} \theta}{\sin ^{2} \theta(\sin \theta-\cos \theta)} \end{aligned} $

(iv)

By LHS

$\begin{aligned} & =\dfrac{\dfrac{1}{1}+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}} \\ \\ & =\frac{\frac{\cos A+1}{\cos A}}{\frac{1}{\cos A}}\\ \\ & =\cos A+1 \\ & =1+\cos A \\ \end{aligned}$

By RHS

$=\dfrac{1^2 -\cos ^2 A}{1-\cos A}$

$ \begin{array}{l} \because a^2-b^2=(a+b)(a-b) \\ \sin ^2 A+\cos ^2 A=1 \\ \sin ^2 A=1-\cos ^2 A \\ \end{array}$

$=\dfrac{(1+\cos A) (1-\cos A)} {(1-\cos A)}$

$1+\cos A$

LHS $=$ RHS

(v)

By LHS

$\text { Divide each term by } \sin \mathrm{A}$

$\begin{aligned} & =\dfrac{\dfrac{\cos A}{\sin A}-\dfrac{\sin A 1}{\sin A}+\dfrac{1}{\sin A}} {\dfrac{\cos A}{\sin A}+\dfrac{\sin A 1}{\sin A}-\dfrac{1}{\sin A}} \\ \\ & =\dfrac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A} \\ \\ & =\frac{\cot A+\operatorname{cosec} A-\left(\operatorname{cosec}^2 A-\cot ^2 A\right)}{\cot A+1-\operatorname{cosec} A} \\ \\ & =\dfrac{\cot A+\operatorname{cosec} A-(\operatorname{cosec} A-\cot A)(\operatorname{cosec} A+\cot A)}{\cot A+1-\operatorname{cosec} A} \\ \\ & =\dfrac{\cot A+\operatorname{cosec} A[1-(\operatorname{cosec} A+\cot A)]}{\cot A+1-\operatorname{cosec} A} \\ \\ & =\dfrac{\cot A+\operatorname{cosec} A(1-\operatorname{cosec} A+\cot A)}{\cot A+1-\operatorname{cosec} A} \\ \\ & =\cot A+\operatorname{cosec} A \\ \\ & =\operatorname{cosec} A+\cot A &\end{aligned}$

= RHS

(vi)

By LHS

$\begin{aligned} & =\sqrt{\dfrac{(1+\sin A) \times(1+\sin A)}{(1-\sin A) \times(1+\sin A)}} \\ \\ & =\sqrt{\dfrac{(1+\sin A)^2}{1^2-\sin ^2 A}} \\ \\ & =\sqrt{\dfrac{(1+\sin A)^2}{\cos ^2 A}} \\ \\ & =\dfrac{\sqrt{(1+\sin A)^2}}{\sqrt{\cos^2 A}} \\ \\ & =\dfrac{1+\sin A}{\cos A} \\ \\ & \because (a-b)(a+b)=a^2-b^2 \\ \\ & \sin ^2 A+\cos ^2 A=1 \\ \\ & \cos ^2 A=1-\sin ^2 A \\ \\ & =\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A} \\ \\ & =\sec A+\tan A \end{aligned}$

= RHS Hence proved

(vii)

By LHS

$\begin{aligned} &= \dfrac{\sin \theta\left(1-2 \sin ^2 \theta\right)}{\cos \theta\left(2 \cos ^2 \theta-1\right)} \\ \\ &=\dfrac{\sin \theta\left(\sin ^2 \theta+\cos ^2 \theta-2 \sin ^2 \theta\right)}{\cos \theta\left(2 \cos ^2 \theta-\left(\sin ^2 \theta+\cos ^2 \theta\right)\right.} \\ \\ &=\dfrac{\sin \theta\left(-\sin ^2 \theta+\cos ^2 \theta\right)}{\cos \theta\left(2 \cos ^2 \theta-\sin ^2 \theta-\cos ^2 \theta\right)} \\ \\ &\because \sin ^2 \theta+\cos ^2 \theta=1 , \sin ^2 \theta-2 \sin ^2 \theta = -\sin ^2 \theta, 2 \cos ^2 \theta-\cos ^2 \theta =\cos ^2 \theta\\ \\ &=\dfrac{\sin \theta\left(\cos ^2 \theta-\sin ^2 \theta\right)}{\cos \theta\left(\cos ^2 \theta-\sin ^2 \theta\right)} \end{aligned}$

$\begin{aligned} =\frac{\sin \theta}{\cos \theta}=\tan \theta \end{aligned}$ = RHS Hence proved

(viii)

By LHS

$\begin{aligned} & =\sin ^2 A+\operatorname{cosec}^2 A+2 \sin A \operatorname{cosec} A+\cos ^2 A+\sec ^2 A+2 \cos A \sec A \\ \\ & \because (a+b)^2=a^2+b^2+2 a b \\ & \sec ^2 A=1+\tan ^2 \theta \\ & \operatorname{cosec}^2 A=1+\cot ^2 A \\ \\ & =\sin ^2 A+\cos ^2 A+\operatorname{cosec}^2 A+\sec ^2 A+2 \sin A \operatorname{cosec} A+2 \cos A \sec A \\ \\ & =1+1+\cot ^2+1+\tan ^2 A+2 \sin A \frac{1}{\sin A}+2 \cos A \times \frac{1}{\cos A} \\ \\ & =2+\cot ^2 A+1+\tan ^2 A+2+2 \\ \\ & =7+\cot ^2 A+\tan ^2 A \end{aligned}$

= RHS Hence proved

(ix)

LHS

$\begin{aligned} & \left(\dfrac{1}{\sin A}-\dfrac{\sin A}{1}\right)\left(\dfrac{1}{\cos A}-\dfrac{\cos A}{1}\right) \\ \\ &=\left(\dfrac{1-\sin ^2 A}{\sin A}\right)\left(\dfrac{1-\cos ^2 A}{\cos A}\right) \\ \\ &=\left(\dfrac{\cos ^2 A}{\sin A}\right)\left(\dfrac{\sin ^2 A}{\cos A}\right) \\ \\ &= \dfrac{\cos A \cos A}{\sin A} \times \dfrac{\sin A \sin A}{\cos A} \\ \\ &=\cos A \sin A &\end{aligned}$

RHS

$\begin{aligned} & =\dfrac{1}{\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A}} \\ \\ & =\dfrac{1}{\dfrac{\sin ^2 A+\cos ^2 A}{\cos A \sin A}} \\ \\ & \because \sin^2 A+\cos ^2 A=1 \\ & \hspace{.6cm}\sin^2 A=1-\cos ^2 A \quad\quad \\ & =\dfrac{1}{\dfrac{1}{\cos A \sin A}} \\ \\ & =1 \times \dfrac{\cos A \sin A}{1} \\ \\ & =\cos A \sin A &\end{aligned}$

LHS = RHS Hence proved

(x)

LHS

$\begin{aligned} & =\dfrac{\sec ^2 A}{\operatorname{cosec}^2 A} \\ & =\dfrac{\dfrac{1}{\cos ^2 A}}{\dfrac{1}{\sin ^2 A}} \\ & =\dfrac{1}{\cos ^2 A} \times \dfrac{\sin ^2 A}{1} \\ & =\dfrac{\sin ^2 A}{\cos ^2 A}=\tan ^2 A \\ & =\left(\frac{1-\tan A}{\frac{1}{1}-\frac{1}{\tan A}}\right)^2 \\ & =\left[\frac{1-\tan A}{\frac{\tan A-1}{\tan A}}\right]^2 \\ & =\left[\frac{1-\tan A}{\frac{-(1-\tan A)}{\tan A}}\right]^2 \\ & =\left[(1-\tan A) \times \frac{(-\tan A)}{(1-\tan A)}\right]^2 \\ & =[-\tan A]^2 \\ & =\tan ^2 A \\ \end{aligned}$

LHS = RHS



Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ