Statistics

Short Answer Type Questions

1. Find the mean deviation about the mean of the distribution.

Size 20 21 22 23 24
Frequency 6 4 5 1 4
Show Answer

Solution

Size Frequency $f _ {i} x _ {i}$ $d _ {i}=|x _ {i}-x|$ $f _ {i} d _ {i}$
20 6 120 1.65 9.90
21 4 84 0.65 2.60
22 5 110 0.35 1.75
23 1 23 1.35 1.35
24 4 96 2.35 9.40
Total 20 433 25

$\bar{x}=\dfrac{\sum f _ {i} x _ {i}}{\sum f _ {i}}=\dfrac{433}{20}=21.65$

$MD=\dfrac{\sum f _ {i}\left|x _ {i}-\bar{x}\right|}{\sum f _ {i}}=\dfrac{25}{20}=1.25$

2. Find the mean deviation about the median of the following distribution.

Marks obtained 10 11 12 14 15
Number of students 2 3 8 3 4
Show Answer

Solution

Marks obtained $f _ i$ $\boldsymbol{cf}$ $d _ i =\mid x _ i-M _ e\mid$ $f _ id _ i$
10 2 2 2 4
11 3 5 1 3
12 8 13 0 0
14 3 16 2 6
15 4 20 3 12
Total $\sum f _ {i}=20$ $\sum f _ {i} d _ {i}=25$

$ M _ {e}=\left(\dfrac{20+1}{2}\right)^{th}\ \text{item }=\dfrac{21}{2}=10.5^ {th} \text { item } $

$ \therefore \quad M _ {e}=12 $

$ \therefore \quad M D=\dfrac{\sum f _ {i} d _ {i}}{\sum f _ {i}}=\dfrac{25}{20}=1.25$

3. Calculate the mean deviation about the mean of the set of first $n$ natural numbers when $n$ is an odd number.

Show Answer

Solution

Consider first natural number when $n$ is an odd i.e., 1, 2, 3, 4, … $n$, [odd].

$ \text { Mean } \bar{x} =\dfrac{1+2+3+\ldots+n}{n}=\dfrac{n(n+1)}{2 n}=\dfrac{n+1}{2} \qquad\left[\because \quad \text { sum of first } n \text { natural numbers }=\dfrac{n(n+1)}{2}\right] $

$\therefore \quad \mathrm{MD} =\dfrac{\left|1-\dfrac{n+1}{2}\right|+\left|2-\dfrac{n+1}{2}\right|+\left|3-\dfrac{n+1}{2}\right|+\cdots+\left|n-\dfrac{n+1}{2}\right|}{n} $

$=\dfrac{\left|-\dfrac{n+1}{2}\right|+\left|2-\dfrac{n+1}{2}\right|+\cdots+\left|\dfrac{n-1}{2}-\dfrac{n+1}{2}\right|+\left|\dfrac{n+1}{2}-\dfrac{n+1}{2}\right|+\left|\dfrac{n+3}{2}-\dfrac{n+1}{2}\right| \cdots+\left|\dfrac{2 n-2}{2}-\dfrac{n+1}{2}\right|+\left|n-\dfrac{n+1}{2}\right|}{n}$

$=\dfrac{2}{n}\left[1+2+\ldots+\dfrac{n-3}{2}+\dfrac{n-1}{2} \right] $

$=\dfrac{2}{n} \left[\dfrac{\left(\dfrac{n-1}{2}\right) \left(\dfrac{n-1}{2}+1\right)}{2}\right] $

$=\dfrac{2}{n} \cdot \dfrac{1}{2} \left[\left(\dfrac{n-1}{2}\right) \left(\dfrac{n+1}{2}\right)\right]=\dfrac{1}{n} \left(\dfrac{n^{2}-1}{4}\right)=\dfrac{n^{2}-1}{4 n} $

4. Calculate the mean deviation about the mean of the set of first $n$ natural numbers when $n$ is an even number.

Show Answer

Solution

Consider first $n$ natural number, when $n$ is even i.e., $1,2,3,4, \ldots \ldots . n$.

$ \begin{aligned} \therefore \quad \text { Mean } \bar{x} & =\dfrac{1+2+3+\ldots+n}{n}=\dfrac{n(n+1)}{2 n}=\dfrac{n+1}{2} \\ \\ MD & =\dfrac{1}{n}\Bigg[\left|1-\dfrac{n+1}{2}\right|+\left|2-\dfrac{n+1}{2}\right|+\left|3-\dfrac{n+1}{2}\right|+\left|\dfrac{n-2}{2}-\dfrac{n+1}{2}\right|+\left|\dfrac{n}{2}-\dfrac{n+1}{2}\right| +\left|\dfrac{n+2}{2}-\dfrac{n+1}{2}\right|+\ldots+\left|n-\dfrac{n+1}{2}\right|\Bigg] \\ \\ & =\dfrac{1}{n}\Bigg[\left|\dfrac{1-n}{2}\right|+\left|\dfrac{3-n}{2}\right|+\left|\dfrac{5-n}{2}\right|+\ldots .+\left|\dfrac{-3}{2}\right|+\left|\dfrac{1}{2}\right|+\ldots+\left|\dfrac{n-1}{2}\right|\Bigg] \\ \\ & =\dfrac{2}{n} \Bigg[\dfrac{1}{2}+\dfrac{3}{2}+\ldots .+\dfrac{n-1}{2}\Bigg] \\ \\ & =\dfrac{1}{n} \cdot \dfrac{n^{2}}{2} \quad[\because \quad \text { sum of first } n \text { odd natural numbers }=n^{2}] \\ \\ & =\dfrac{1}{n} \cdot \dfrac{n^{2}}{4}=\dfrac{n}{4} \end{aligned} $

5. Find the standard deviation of first $n$ natural numbers.

Show Answer

Solution

$x _ i$ 1 2 3 4 5 $\ldots$ $\ldots$ $n$
$(x _ i)^2 $ 1 4 9 16 25 $\ldots$ $\ldots$ $n^{2}$

$ \begin{aligned} \Sigma x _ {i} & =1+2+3+4+\ldots+n=\dfrac{n(n+1)}{2} \\ \\ \text { and } \quad \sum x _ i^{2} & =1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\dfrac{n(n+1)(2 n+1)}{6} \\ \\ \text { Now, }\quad SD & =\sqrt{\dfrac{\sum x _ i^{2}}{N}-(\dfrac{\sum x _ {i}{ }}{N})^{2}} \\ \\ & =\sqrt{\dfrac{n(n+1)(2 n+1)}{6 n}-\dfrac{n^{2}(n+1)^{2}}{4 n^{2}}} \\ \\ & =\sqrt{\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{4}} \\ \\ & =\sqrt{\dfrac{2(2 n^{2}+3 n+1)-3(n^{2}+2 n+1)}{12}} \\ \\ & =\sqrt{\dfrac{4 n^{2}+6 n+2-3 n^{2}-6 n-3}{12}} \\ \\ & =\sqrt{\dfrac{n^{2}-1}{12}} \end{aligned} $

6. The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results

Number of observation $=25$, mean $=18.2 s$, standard, deviation $=3.25 s$ Further, another set of 15 observations $x _ 1 x _ 2 \ldots x _ {15}$, also in seconds, is now available and we have $\sum _ {i=1}^{15} x _ {i}=279$ and $\sum _ {i=1}^{15} x _ i^{2}=5524$. Calculate the standard derivation based on all 40 observations.

Show Answer

Solution

Given,

$n _ {i} =25, \bar x _ i=18.2, \sigma _ 1=3.25 \\ \\ $

$n _ 2 =15, \sum _ {i=1}^{15} x _ {i}=279 \text { and } \sum _ {i=1}^{15} x _ i^{2}=5524 $

For first set,

$ \begin{aligned} \sum x _ {i} & =25 \times 18.2=455 \\ \\ \sigma _ 1^{2} & =\dfrac{\sum x _ i^{2}}{25}-(18.2)^{2} \\ \\ 25^{2} & =\dfrac{\sum x _ i^{2}}{25}-331.24 \\ \\ 1.24 & =\dfrac{\sum x _ i^{2}}{25} \\ \\ \Sigma x _ i^{2} & =25 \times(10.5625) \\ \\ & =25 \times 341.8025 \\ \\ & =8545.0625 \end{aligned} $

$ \begin{matrix} \therefore \quad & \sigma _ 1^{2}=\dfrac{\Sigma x _ i^{2}}{25}-(18.2)^{2} \\ \\ \Rightarrow & (3.25)^{2}=\dfrac{\Sigma x _ i^{2}}{25}-331.24 \\ \\ \Rightarrow & 10.5625+331.24=\dfrac{\Sigma x _ i^{2}}{25} \\ \\ \Rightarrow & \Sigma x _ i^{2}=25 \times(10.5625+331.24) \end{matrix} $

For combined SD of the 40 observations $n=40$,

$ \begin{aligned} \text { Now } \quad \Sigma x _ i^{2} & =5524+8545.0625=14069.0625 \\ \\ \text { and } \quad \Sigma x _ {i} & =455+279=734 \\ \\ \therefore \quad SD &=\sqrt{\dfrac{14069.0625}{40}-(\dfrac{734}{40})^{2}} \\ \\ & =\sqrt{351.726-(18.35)^{2}} \\ \\ & =\sqrt{351.726-336.7225} \\ \\ & =\sqrt{15.0035}=3.87 \end{aligned} $

7. The mean and standard deviation of a set of $n _ 1$ observations are $\bar x _ 1$ and $s _ 1$, respectively while the mean and standard deviation of another set of $n _ 2$ observations are $\bar x _ 2$ and $s _ 2$, respectively. Show that the standard deviation of the combined set of $(n _ 1+n _ 2)$ observations is given by

$ SD={\sqrt{\dfrac{n _ 1(s _ 1)^{2}+n _ 2(s _ 2)^{2}}{n _ 1+n _ 2}+\dfrac{n _ 1 n _ 2(\bar x _ 1- \bar x _ 2)^{2}}{(n _ 1-n _ 2)^{2}}}} $

Show Answer

Solution

Given : mean and standard deviation of a set of $ n _ {1} $ observation are $ \bar{x} _ {1} $ and $ s _ {1} $ respectively while the mean and standard deviation of another set of $ n $ observation are $ \bar{x} _ {2} $ and $ s _ {2} $ respectively.

Let $ s $ be the standard deviation and $ \bar{x} $ be the mean of combined sent of $( n _ {1}+n _ {2} )$ observations.

$ \bar{x}=\dfrac{n _ {1} \bar{x} _ {1}+n _ {2} \bar{x} _ {2}}{n _ {1}+n _ {2}} \qquad…(1) $

If $ d _ {1}=\bar{x} _ {1}-\bar{x} $ and $ d _ {2}=\bar{x} _ {2}-\bar{x} $ then

$ s^{2}=\dfrac{1}{n _ {1}+n _ {2}}\left[n _ {1}\left(s _ {1}^{2}+d _ {1}^{2}\right)+n _ {2}\left(s _ {2}^{2}+d _ {2}^{2}\right)\right] \qquad…(2) $

Now,

$d _ {1}^{2}=\left(\bar{x} _ {1}-\bar{x}\right)^{2}=\left\lbrace \bar{x} _ {1}-\dfrac{n _ {1} \bar{x} _ {1}+n _ {2} \bar{x} _ {2}}{n _ {1}+n _ {2}}\right\rbrace^{2}$

$ d _ {1}^{2}=\dfrac{n _ {1}^{2}\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}}{\left(n _ {1}+n _ {2}\right)^{2}}\qquad…(3) $

and $ d _ {2}^{2}=\left(\bar{x} _ {2}-\bar{x}\right)^{2} =\left\lbrace \bar{x} _ {2}-\dfrac{n _ {1} \bar{x} _ {1}+n _ {2} \bar{x} _ {2}}{n _ {1}+n _ {2}}\right\rbrace^{2}$

$ \qquad\quad=\dfrac{n _ {2}^{2}\left(\bar{x} _ {2}-\bar{x} _ {1}\right)^{2}}{\left(n _ {1}+n _ {2}\right)^{2}}=\dfrac{n _ {1}^{2}\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}}{\left(n _ {1}+n _ {2}\right)^{2}} \qquad…(4) $

From (2), (3) and (4) we get,

$ \begin{array}{l} s^{2}=\dfrac{1}{n _ {1}+n _ {2}} {\left[n _ {1}\left\lbrace s _ {1}^{2}+\dfrac{n _ {2}^{2}\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}}{\left(n _ {1}+n _ {2}\right)^{2}}\right\rbrace+n _ {2}\left\lbrace s _ {2}^{2}+\dfrac{n _ {1}^{2}\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}}{\left(n _ {1}+n _ {2}\right)^{2}}\right\rbrace\right]} \end{array} $

$ s^{2}=\dfrac{1}{n _ {1}+n _ {2}}\left[n _ {1} s _ {1}^{2}+n _ {2} s _ {2}^{2}+\dfrac{\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}}{\left(n _ {1}+n _ {2}\right)^{2}}\left(n _ {1} n _ {2}^{2}+n _ {2} n _ {1}^{2}\right)\right] $

$ s^{2}=\dfrac{1}{n _ {1} n _ {2}}\left[n _ {1} s _ {1}^{2}+n _ {2} s _ {2}^{2}+\dfrac{n _ {1} n _ {2}}{\left(n _ {1}+n _ {2}\right)}\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}\right] $

$ s=\sqrt{\dfrac{n _ {1} s _ {1}^{2}+n _ {2} s _ {2}^{2}}{n _ {1}+n _ {2}}+\dfrac{n _ {1} n _ {2}}{\left(n _ {1}+n _ {2}\right)^{2}}\left(\bar{x} _ {1}-\bar{x} _ {2}\right)^{2}} $ is proved.

8. Two sets each of 20 observations, have the same standard deviation 5. The first set has a mean 17 and the second mean 22 .

Determine the standard deviation of the $x$ sets obtained by combining the given two sets.

Show Answer

Solution

Given, $n _ 1=20, \sigma _ 1=5, \bar x _ 1=17$ and $n _ 2=20, \sigma _ 2=5, \bar x _ 2=22$

We know that, $\sigma=\sqrt{\dfrac{n _ 1 s _ 1^{2}+n _ 2 s _ 2^{2}}{n _ 1+n _ 2}+\dfrac{n _ 1 n _ 2(\bar x _ 1-\bar x _ 2)^{2}}{(n _ 1+n _ 2)^{2}}}$

$ \hspace {2.2cm}=\sqrt{\dfrac{20 \times(5)^{2}+20 \times(5)^{2}}{20+20}+\dfrac{20 \times 20(17-22)^{2}}{(20+20)^{2}}}$

$ \hspace {2.2cm}=\sqrt{\dfrac{1000}{40}+\dfrac{400 \times 25}{1600}}=\sqrt{25+\dfrac{25}{4}}$

$ \hspace {2.2cm}=\sqrt{\dfrac{125}{4}}=\sqrt{31.25}=5.59$

9. The frequency distribution

$\boldsymbol{x}$ $A$ $2 A$ $3 A$ $4 A$ $5 A$ $6 A$
$\boldsymbol{f}$ 2 1 1 1 1 1

where, $A$ is a positive integer, has a variance of 160 . Determine the value of $A$.

Show Answer

Solution

$x$ $f _ i$ $f _ i x _ i$ $f _ i x _ i^2$
$A$ 2 $2 A$ $2 A^{2}$
$2 A$ 1 $2 A$ $4 A^{2}$
$3 A$ 1 $3 A$ $9 A^{2}$
$4 A$ 1 $4 A$ $16 A^{2}$
$5 A$ 1 $5 A$ $25 A^{2}$
$6 A$ 1 $6 A$ $36 A^{2}$
Total 7 $22 A$ $92 A^{2}$
$n=7$ $\Sigma f _ {i} n _ {i}=22 A$ $\Sigma f _ {i} n _ i^{2}=92 A^{2}$

$\therefore \quad \sigma^{2}=\dfrac{\Sigma f _ {i} x _ i^{2}}{n}-\left(\dfrac{\Sigma f _ {i} x _ {i}}{n}\right)^2 $

$\Rightarrow 160=\dfrac{92 A^{2}}{7}-(\dfrac{(22 A)}{7})^{2} $

$\Rightarrow 160=\dfrac{92 A^{2}}{7}-\dfrac{484 A^{2}}{49} $

$\Rightarrow 160=(644-484) \dfrac{A^{2}}{49} $

$\Rightarrow 160=\dfrac{160 A^{2}}{49} $

$ \Rightarrow A^{2}=49 $

$\therefore \quad A=7$

10. For the frequency distribution

$\boldsymbol{x}$ 2 3 4 5 6 7
$\boldsymbol{f}$ 4 9 16 14 11 6

Find the standard distribution.

Show Answer

Solution

$x _ i$ $f _ i$ $d _ i = x _ i - 4$ $f _ i d _ i$ $f _ i d _ i^2$
2 4 -2 -8 16
3 9 -1 -9 9
4 16 0 0 0
5 14 1 14 14
6 11 2 22 44
7 6 3 18 54
Total 60 $\Sigma f _ {i} d _ {i}=37$ $\Sigma f _ {i} d _ i^{2}=137$

$\therefore \quad SD$ $ =\sqrt{\dfrac{\Sigma f _ {i} d _ i^{2}}{N}-\Big(\dfrac{\Sigma f _ {i} d _ i}{N}\Big)^{2}}$

$\qquad \qquad =\sqrt{\dfrac{137}{60}-\Big(\dfrac{37}{60}\Big)^{2}} $

$\qquad \qquad=\sqrt{2.2833-(0.616)^{2}} $

$\qquad \qquad=\sqrt{2.2833-0.3794} $

$\qquad \qquad =\sqrt{1.9037}=1.38$

11. There are 60 students in a class. The following is the frquency distribution of the marks obtained by the students in a test.

Marks 0 1 2 3 4 5
Frequency $x-2$ $x$ $x^{2}$ $(x+1)^{2}$ $2 x$ $x+1$

where, $x$ is positive integer. Determine the mean and standard deviation of the marks

Show Answer

Solution

$\therefore \quad$ Sum of frequencies,

$\begin{aligned} & x-2+x+x^2+(x+1)^2+2 x+x+1=60 \\ \\ & \Rightarrow \quad 2 x-2+x^2+x^2+1+2 x+2 x+x+1=60 \\ \\ & \Rightarrow \quad 2 x^2+7 x=60 \\ \\ & \Rightarrow \quad 2 x^2+7 x-60=0 \\ \\ & \Rightarrow \quad 2 x^2+15 x-8 x-60=0 \\ \\ & \Rightarrow \quad x(2 x+15)-4(2 x+15)=0 \\ \\ & \Rightarrow \quad(2 x+15)(x-4)=0 \\ \\ & \Rightarrow x=-\dfrac{15}{2}, 4 \\ \\ & \Rightarrow x=-\dfrac{15}{2} \qquad \text { [inaddmisible since x is positive ]} \\ \\ & \end{aligned}$

$x _ i$ $f _ i$ $d _ i=x _ i-3$ $f _ i d _ i$ $f _ i d _ i^2$
0 2 -3 -6 18
1 4 -2 -8 16
2 16 -1 -16 16
$A=3$ 25 0 0 0
4 8 1 8 8
5 5 2 10 20
Total $\Sigma f _ i=60$ $\Sigma f _ i d _ i=-12$ $\Sigma f _ i d _ i^2=78$

$\begin{aligned} \text { Mean } & =A+\dfrac{\sum f _ i d _ i}{\Sigma f _ i}=3+\dfrac{-12}{60}=2.8 \\ \\ \sigma & =\sqrt{\dfrac{\sum f _ i d _ i^2}{\Sigma f _ i}-\Big(\dfrac{\sum f _ i d _ i)}{\Sigma f _ i}\Big)^2}=\sqrt{\dfrac{78}{60}-\Big(\dfrac{-12}{60}\Big)^2} \\ \\ & =\sqrt{1.3-0.04}=\sqrt{1.26}=1.12\end{aligned}$

12. The mean life of a sample of 60 bulbs was $650 h$ and the standard deviation was $8 h$. If a second sample of 80 bulbs has a mean life of 660 $h$ and standard deviation $7 h$, then find the over all standard deviation.

Show Answer

Solution

Here, $n _ 1=60, \bar x _ 1=650, s _ 1=8$ and $n _ 2=80, \bar x _ 2=660, s _ 2=7$

$\therefore \quad \sigma =\sqrt{\dfrac{n _ 1 s _ 1{ }^{2}+n _ 2 s _ 2{ }^{2}}{n _ 1+n _ 2}+\dfrac{n _ 1 n _ 2(\bar x _ 1-\bar x _ 2)^{2}}{(n _ 1+n _ 2)^{2}}} $

$\hspace{1cm}=\sqrt{\dfrac{60 \times(8)^{2}+80 \times(7)^{2}}{60+80}+\dfrac{60 \times 80(650-660)^{2}}{(60+80)^{2}}} $

$\hspace{1cm}=\sqrt{\dfrac{6 \times 64+8 \times 49}{14}+\dfrac{60 \times 80 \times 100}{140 \times 140}} $

$\hspace{1cm}=\sqrt{\dfrac{192+196}{7}+\dfrac{1200}{49}}=\sqrt{\dfrac{388}{7}+\dfrac{1200}{49}} $

$\hspace{1cm}=\sqrt{\dfrac{2716+1200}{49}}=\sqrt{\dfrac{3916}{49}}$

$\hspace{1cm}=\dfrac{62.58}{7}=8.9 $

13. If mean and standard deviation of 100 items are 50 and 4 respectively, then find the sum of all the item and the sum of the squares of item.

Show Answer

Solution

$\Rightarrow \quad \dfrac{\sum \mathrm{x} _ {\mathrm{i}}}{100}=50 $

$\Rightarrow \quad \sum \mathrm{x} _ {\mathrm{i}}=5000 $

$\Rightarrow \quad \dfrac{\sum\left(\mathrm{x} _ {\mathrm{i}}-50\right)^{2}}{\mathrm{ ~ N}}=16 $

$\Rightarrow \quad \dfrac{\sum \mathrm{x} _ {\mathrm{i}}^{2}-100 \sum \mathrm{x} _ {\mathrm{i}}+2500}{100}=16 $

$\Rightarrow \quad \sum \mathrm{x} _ {\mathrm{i}}^{2}-100 \times 5000+2500=16 \times 100 $

$\Rightarrow \quad \sum \mathrm{x} _ {\mathrm{i}}^{2}=500000-900 $

$\Rightarrow \quad \therefore \quad \sum \mathrm{x} _ {\mathrm{i}}^{2}=499100 $

14. If for distribution $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ and total number of item is 18 . Find the mean and standard deviation.

Show Answer

Solution

Given,

$ \begin{aligned} n & =18, \Sigma(x-5)=3 \text { and } \Sigma(x-5)^{2}=43 \\ \\ & =5+\dfrac{3}{18}=5+0.1666=5.1666=5.17 \\ \\ \text { SD } & =\sqrt{\dfrac{\sum(x-5)^{2}}{n}-\Big(\dfrac{\sum(x-5)}{n}\Big)^{2}} \\ \\ & =\sqrt{\dfrac{43}{18}-\Big(\dfrac{3}{18}\Big)^2} \\ \\ & =\sqrt{2.3944-(0.166)^{2}}=\sqrt{2.3944-0.2755}=1.59 \end{aligned} $

$ \begin{aligned} & \therefore \quad \text { Mean }=A+\dfrac{\sum(x-5)}{18} \end{aligned} $

15. Find the mean and variance of the frequency distribution given below.

$\boldsymbol{x}$ $1 \leq x \leq 3$ $3 \leq x \leq 5$ $5 \leq x \leq 7$ $7 \leq x \leq 10$
$\boldsymbol{f}$ 6 4 5 1
Show Answer

Solution

$x$ $f _ i$ $x _ i$ $f _ i x _ i$ $f _ i x _ i^2$
$1-3$ 6 2 12 24
$3-5$ 4 4 16 64
$5-7$ 5 6 30 180
$7-10$ 1 8.5 8.5 72.25
Total $n=16$ $\Sigma f _ {i} x _ {i}=66.5$ $\Sigma f _ {i} x _ i^{2}=340.25$

$\therefore \quad $ Mean $=\dfrac{\Sigma f _ {i} x _ {i}}{\Sigma f _ {i}}=\dfrac{66.5}{16}=4.15$

$ \begin{aligned} \text { variance } & =\sigma^{2}=\dfrac{\Sigma f _ {i} x _ i^{2}}{\Sigma f _ {i}}-\Big(\dfrac{\Sigma f _ {i} x _ {i}}{\Sigma f _ {i}}\Big)^2 \\ \\ & =\dfrac{340.25}{16}-(4.15)^{2} \\ \\ & =21.2656-17.2225=4.043 \end{aligned} $

Long Answer Type Questions

16. Calculate the mean deviation about the mean for the following frequency distribution.

Class interval $0-4$ $4-8$ $8-12$ $12-16$ $16-20$
Frequency 4 6 8 5 2
Show Answer

Solution

$ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class internal} & f _ i & x _ i & f _ i x _ i & d _ i=x _ i- \overline x \mid & f _ i d _ i \\ \hline 0-4 & 4 & 2 & 8 & 7.2 & 28.8 \\ 4-8 & 6 & 6 & 36 & 3.2 & 19.2 \\ 8-12 & 8 & 10 & 80 & 0.8 & 6.4 \\ 12-16 & 5 & 14 & 70 & 4.8 & 24.0 \\ 16-20 & 2 & 18 & 36 & 8.8 & 17.6 \\ \hline Total & \Sigma f _ i=25 & & \Sigma f _ i x _ i=230 & & \Sigma f _ i d _ i=96 \\ \hline \end{array} $

$\begin{aligned} & \therefore \quad \text { Mean }=\dfrac{\Sigma f _ i x _ i}{\Sigma f _ i}=\dfrac{230}{25}=9.2 \\ \\ & \text { and } \quad \text { mean deviation }=\dfrac{\Sigma f d _ i}{\Sigma f _ i}=\dfrac{96}{25}=3.84 \\ \\ & \end{aligned}$

17. Calculate the mean deviation from the median of the following data.

Class interval $0-6$ $6-12$ $12-18$ $18-24$ $24-30$
Frequency 4 5 3 6 2
Show Answer

Solution

Class interval $f _ i$ $x _ i$ $cf$ $d _ i = \mid x _ i - \bar m _ d \mid$ $f _ i d _ i$
$0-6$ 4 3 4 11 44
6-12 5 9 9 5 25
$12-18$ 3 15 12 1 3
$18-24$ 6 21 18 7 42
$24-30$ 2 27 20 13 26
Total 20 37 140

$N=20$ , $\dfrac{N}{2}=\dfrac{20}{2}=10$

So, the median class is $12-18$.

$ \begin{aligned} \quad \text { Median } & =l+\dfrac{\dfrac{N}{2}-c f}{f} \times h \\ \\ & =12+\dfrac{6}{3}(10-9) \\ \\ & =12+2=14 \\ \\ MD & =\dfrac{\Sigma f _ {i} d _ {i}}{\Sigma f _ {i}}=\dfrac{140}{20}=7 \end{aligned} $

18. Determine the mean and standard deviation for the following distribution.

Marks 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 6 6 8 8 2 2 3 0 2 1 0 0 0 1
Show Answer

Solution

Marks $f _ i$ $f _ i x _ i$ $d _ i = x _ i - \bar x$ $f _ i d _ i$ $f _ i d _ i^2$
2 1 2 $2-6=-4$ -4 16
3 6 18 $3-6=-3$ -18 54
4 6 24 $4-6=-2$ -12 24
5 8 40 $5-6=-1$ -8 8
6 8 48 $6-6=0$ 0 0
7 2 14 $7-6=1$ 2 2
8 2 16 $8-6=2$ 4 8
9 3 27 $9-6=3$ 9 27
10 0 0 $10-6=4$ 0 0
11 2 22 $11-6=5$ 10 50
12 1 12 $12-6=6$ 6 36
13 0 0 $13-6=7$ 0 0
14 0 0 $14-6=8$ 0 0
15 0 0 $15-6=9$ 0 0
16 1 16 $16-6=10$ 10 100
Total $\boldsymbol{\Sigma} f _ {i}=40$ $\Sigma f _ {i} x _ {i}=239$ $\Sigma f _ {i} d _ {i}=-1$ $\Sigma f _ {i} x _ i^{2}=325$

$ \begin{aligned} & \therefore \quad \text { Mean } \bar{x}=\dfrac{\Sigma f _ {i} x _ {i}}{\Sigma f _ {i}}=\dfrac{239}{40}=5.975 \approx 6 \\ \\ & \text { and } \\ \\ & \begin{aligned} \sigma & =\sqrt{\dfrac{\Sigma f _ {i} d _ i^{2}}{\Sigma f _ {i}}-\Big(\dfrac{\Sigma f _ {i} d _ i}{\Sigma f _ {i}}\Big)^{2}}=\sqrt{\dfrac{325}{40}-\Big(\dfrac{-1}{40}\Big)^{2}} \\ \\ & =\sqrt{8.125-0.000625}=\sqrt{8.124375}=2.85 \end{aligned} \end{aligned} $

19. The weights of coffee in 70 jars is shown in the following table

Weight (in g) Frequency
$200-201$ 13
$201-202$ 27
$202-203$ 18
$203-204$ 10
$204-205$ 1
$205-206$ 1

Determine variance and standard deviation of the above distribution.

Show Answer

Solution

Cl $f _ {i}$ $x _ {i}$ $d _ {i}=x _ {i}-\bar{x}$ $f _ {i} d _ {i}$ $f _ {i} d _ i^{2}$
200-201 13 200.5 -2 -26 52
$201-202$ 27 201.5 -1 -27 27
202-203 18 202.5 0 0 0
203-204 10 203.5 1 10 10
204-205 1 204.5 2 2 4
205-206 1 205.5 3 3 9
Total $\Sigma f _ {i}=70$ $\Sigma f _ {i} d _ {i}=-38$ $\Sigma f _ {i} d _ i^{2}=102$

Now,

$\sigma^2 ={\dfrac{\Sigma f _ {i} d _ i^{2}}{\Sigma f _ {i}}-\Big(\dfrac{\Sigma f _ {i} d _ i}{\Sigma f _ {i}}\Big)^{2}}$

$\quad =1.4571-0.2916=1.1655 \\ \\ \therefore \quad SD, \sigma =\sqrt{1.1655}=1.08 $

20. Determine mean and standard deviation of first $n$ terms of an AP whose first term is a and common difference is $d$.

Show Answer

Solution

$x _ i$ $xx _ i - a$ $(x _ i - a)^2$
$a$ 0 0
$a+d$ $d$ $d^{2}$
$a+2 d$ $2 d$ $4 d^{2}$
$\ldots \ldots$ $\ldots \ldots$ $\ldots \ldots$.
$\ldots \ldots$ $\ldots \ldots$. $\ldots \ldots$.
$\ldots \ldots$ $\ldots \ldots$. $\ldots \ldots$.
$a+(n-1) d$ $(n-1) d$ $(n-1)^{2} d^{2}$

$\sum x _ {i}=\dfrac{n}{2}[2 a+(n-1)]$

Mean $=\dfrac{\sum x _ {i}}{n}=\dfrac{1}{n} \dfrac{n}{2}(2 a)+(n-1) d$ $=$ $a+\dfrac{(n-1)}{2} d$

$ \begin{aligned} \Sigma(x _ {i}-a) & =d[1+2+3+\ldots+(n-1) d] \\ \\ & =d \dfrac{(n-1) n}{2} \\ \\ \text { and } \quad \sum(x _ {i}-a)^{2} & =d^{2}[1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}] \\ \\ & =\dfrac{d^{2}(n-1) n(2 n-1)}{6} \\ \\ \sigma & =\sqrt{\dfrac{\sum(x _ {i}-a)^{2}}{n}-\Big(\sum\dfrac{x _ {i}-a}{n}\Big)^{2}} \\ \\ & =\sqrt{\dfrac{d^{2}(n-1)(n)(2 n-1)}{6 n}-\Big(\dfrac{d(n-1) n{ }}{2n }\Big)^{2}} \\ \\ & =\sqrt{\dfrac{d^{2}(n-1)(2 n-1)}{6}-\dfrac{d^{2}{n^2}(n-1)^{2}}{4n^2}} \\ \\ & =d \sqrt{\dfrac{(n-1)(2 n-1)}{6}-\dfrac{(n-1)^{2}}{4}} \\ \\ & =d \sqrt{\dfrac{(n-1)}{2} \Big(\dfrac{2 n-1}{3}-\dfrac{n-1}{2}\Big)} \\ \\ & =d \sqrt{\dfrac{(n-1)}{2} \Big(\dfrac{4 n-2-3 n+3}{6}\Big)} \\ \\ & =d \sqrt{\dfrac{(n-1)(n+1)}{12}}=d \sqrt{\dfrac{(n^{2}-1)}{12}} \end{aligned} $

21. Following are the marks obtained, out of 100, by two students Ravi and Hashina in 10 tests

Ravi 25 50 45 30 70 42 36 48 35 60
Hashina 10 70 50 20 95 55 42 60 48 80

Who is more intelligent and who is more consistent?

Show Answer

Solution

For Ravi,

$x _ i$ $d _ i = x _ i - 45$ $d _ i^2$
25 -20 400
50 5 25
45 0 0
30 -15 225
70 25 625
42 -3 9
36 -9 81
48 3 9
35 -10 100
60 15 225
Total $\boldsymbol{\Sigma} d _ {i}=-14$ $\Sigma d^{2} _ {i}=1699$

Now,

$ \begin{aligned} \sigma & =\sqrt{\dfrac{\Sigma d^{2} _ i}{n}-\Big(\dfrac{\Sigma d _ {i}{ }}{n}\Big)^{2}} \\ \\ & =\sqrt{\dfrac{1699}{10}-\Big(\dfrac{-14}{10}\Big)^{2}}=\sqrt{169.9-1.96} \\ \\ & =\sqrt{167.94}=12.96 \\ \\ \bar{x} & =A+\dfrac{\Sigma d _ {i}}{\Sigma f _ {i}}=45-\dfrac{14}{10}=43.6 \end{aligned} $

For Hashina,

$x _ i$ $d _ i = x _ i - 55$ $d _ i^2$
10 -45 2025
70 25 625
50 -5 25
20 -35 1225
95 40 1600
55 0 0
42 -13 169
60 5 25
48 -7 49
80 25 625
Total $\boldsymbol{\Sigma} d _ {i}=0$ $\sum d _ i^{2}=6368$

$ \begin{aligned} & \because \quad \quad \text { Mean }=55 \\ \\ & \therefore \quad \sigma=\sqrt{\dfrac{6368}{10}}=\sqrt{636.8}=25.2 \\ \\ & CV=\dfrac{\sigma}{\bar{x}} \times 100=\dfrac{12.96}{43.6} \times 100=29.72 \\ \\ & CV=\dfrac{\sigma}{\bar{x}} \times 100=\dfrac{25.2}{55} \times 100=45.89 \end{aligned} $

Hence, Hashina is more consistent and intelligent.

22. Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, then find the correct standard deviation.

Show Answer

Solution

Given, $ \quad n =100, \bar{x}=40, \sigma=10 \text { and } \bar{x}=40 $

$\therefore \quad \dfrac{\sum x _ {i}}{n} =40$

$\Rightarrow \quad \dfrac{\Sigma x _ {i}}{100}=40$

$\Rightarrow\quad \Sigma x _ {i} =4000$

$ \begin{aligned} \text { Corrected } \Sigma x _ {i} & =4000-30-70+3+27 \\ \\ & =4030-100=3930 \\ \\ \text { Corrected mean } & =\dfrac{2930}{100}=39.3 \end{aligned} $

$ \begin{aligned} \sigma^{2} & =\dfrac{\Sigma x _ i^{2}}{n}-(40)^{2} \\ \\ 100 & =\dfrac{\Sigma x _ i^{2}}{100}-1600 \\ \\ \Sigma x _ i^{2} & =170000 \end{aligned} $

Corrected $\Sigma x _ i^{2}=170000-(30)^{2}-(70)^{2}+3^{2}+(27)^{2}$

$ \begin{aligned} & =164939 \\ \\ \text { Corrected } \sigma & =\sqrt{\dfrac{164939}{100}-(39.3)^{2}} \\ \\ & =\sqrt{1649.39-39.3 \times 39.3} \\ \\ & =\sqrt{1649.39-1544.49} \\ \\ & =\sqrt{104.9}=10.24 \end{aligned} $

23. While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16, respectively. Find the correct mean and the variance.

Show Answer

Solution

$ \begin{array}{l} \operatorname{mean}(\bar{x})=45 \\ \\ \text { variance }=\left(\sigma^{2}\right)=16 \\ \\ n=10 \end{array} $

As we know, $ \operatorname{mean}(\bar{x})=\dfrac{\sum x}{n} $

$ \Rightarrow \Sigma x=45 x _ {10}=450 $

Now, replacing the urlong rading 52 by 25 , we get,

$ \sum x(\text { Corrected })=450-52+25=423 $

$ \therefore \quad \text { Corrected mean }(\bar{x})=\dfrac{\sum x(\text { Corrected })}{n}=\dfrac{423}{10} $

$ \text { Corrected mean }(\bar{x})=42.3 $

Now, given variance $ =16 $

$ \begin{array}{l} \therefore \quad \dfrac{\sum x^{2}}{n}-\left(\dfrac{\sum x}{n}\right)^{2}=\sigma^{2}=16 \\ \\ \Rightarrow\quad \dfrac{\sum x^{2}}{10}-\left(\dfrac{450}{10}\right)^{2}=16 \\ \\ \Rightarrow\quad \sum x^{2}=20410 \end{array} $

Now, replacing wrong reading 52 by 25 we get,

$ \begin{array}{l} \Sigma x^{2}=20410-(52)^{2}+(25)^{2} \\ \\ \Sigma x^{2}=18331 \end{array} $

Hence, Corrected variance $ \sigma^{2}=\dfrac{\sum x^{2} \text { (Corrected) }}{n}-\left(\dfrac{\sum x}{n}\right)^{2} $

$ \begin{aligned} & \qquad =\dfrac{18331}{10}-\left(\dfrac{423}{10}\right)^{2} \\ \\ \text { Corrected variance } & =43.81 \end{aligned} $

Objective Type Questions

24. The mean deviation of the data $3,10,10,4,7,10,5$ from the mean is

(a) 2

(b) 2.57

(c) 3

(d) 3.75

Show Answer

Solution

(b) Given, observations are $3,10,10,4,7,10$ and $5.$

Here, $n=7,\bar x=\dfrac{3+10+10+4+7+10+5}{7}=7$

$x _ {i}$ $d _ {i}=x _ {i}-\bar{x}$
3 4
10 3
10 3
4 3
7 0
10 3
5 2
Total $\Sigma d _ {i}=18$

Now, $MD=\dfrac{\sum d _ {i}}{N}=\dfrac{18}{7}=2.57$

  • Option (a) is incorrect because the mean deviation calculated from the given data is not 2. The correct mean deviation is 2.57.
  • Option (c) is incorrect because the mean deviation calculated from the given data is not 3. The correct mean deviation is 2.57.
  • Option (d) is incorrect because the mean deviation calculated from the given data is not 3.75. The correct mean deviation is 2.57.

25. Mean deviation for $n$ observations $x _ 1, x _ 2, \ldots, x _ {n}$ from their mean $\bar{x}$ is given by

(a) $\sum _ {i=1}^{n}(x _ {i}-\bar{x})$

(b) $\dfrac{1}{n} \sum _ {i=1}^{n}|x _ {i}-\bar{x}|$

(c) $\sum _ {i=1}^{n}(x _ {i}-\bar{x})^{2}$

(d) $\dfrac{1}{n} \sum _ {i=1}^{n}(x _ {i}-\bar{x})^{2}$

Show Answer

Solution

(b) $MD=\dfrac{1}{n} \sum _ {i=1}^{n}|x _ {i}-\bar{x}|$

  • Option (a): $\sum _ {i=1}^{n}(x _ {i}-\bar{x})$ is incorrect because the sum of deviations from the mean is always zero. This is due to the property of the mean, which balances the data points such that the positive and negative deviations cancel each other out.

  • Option (c): $\sum _ {i=1}^{n}(x _ {i}-\bar{x})^{2}$ is incorrect because this represents the sum of squared deviations from the mean, which is used to calculate the variance, not the mean deviation.

  • Option (d): $\dfrac{1}{n} \sum _ {i=1}^{n}(x _ {i}-\bar{x})^{2}$ is incorrect because this represents the mean of the squared deviations from the mean, which is the definition of variance, not the mean deviation.

26. When tested, the lives (in hours) of 5 bulbs were noted as follows

$ 1357,1090,1666,1494,1623 $

The mean deviations (in hours) from their mean is

(a) 178

(b) 179

(c) 220

(d) 356

Show Answer

Solution

(a) Since, the lives of 5 bulbs are 1357, 1090, 1666, 1494 and 1623.

$ \begin{aligned} \therefore \quad \text { Mean } & =\dfrac{1357+1090+1666+1494+1623}{5} \\ \\ & =\dfrac{7230}{5}=1446 \end{aligned} $

$x _ {\boldsymbol{i}}$ $d _ i = \mid x _ i - \bar x \mid$
1357 89
1090 356
1666 220
1494 48
1623 177
Total $\sum d _ {i}=890$
MD $=\dfrac{\Sigma d _ {i}}{N}=\dfrac{890}{5}=178$
  • Option (b) 179 is incorrect because the correct mean deviation calculated from the given data is 178, not 179. The sum of the absolute deviations from the mean is 890, and dividing this by the number of bulbs (5) gives 178.

  • Option (c) 220 is incorrect because it represents the absolute deviation of one of the bulbs (1666) from the mean, not the mean deviation of all bulbs.

  • Option (d) 356 is incorrect because it represents the absolute deviation of one of the bulbs (1090) from the mean, not the mean deviation of all bulbs.

27. Following are the marks obtained by 9 students in a mathematics test $50,69,20,33,53,39,40,65,59$

The mean deviation from the median is

(a) 9

(b) 10.5

(c) 12.67

(d) 14.76

Show Answer

Solution

(c) Since, marks obtained by 9 students in Mathematics are 50, 69, 20, 33, 53, 39, 40, 65 and 59.

Rewrite the given data in ascending order.

$20,33,39,40,50,53,59,65,69$,

Here, $n=9 \ [odd]$

$\therefore \quad $ Median $=\dfrac{9+1}{2}$ term $=5$ th term

$M _ e=50$

$x _ i$ $d _ i = \mid x _ i - Me \mid $
20 30
33 17
39 11
40 10
50 0
53 3
59 9
65 15
69 19
$\Sigma d _ {i}=114$
MD $=\dfrac{114}{9}=12.67$

$\therefore \quad \text{Option (c) is correct.}$

28. The standard deviation of data $6,5,9,13,12,8$ and 10 is

(a) $\sqrt{\dfrac{52}{7}}$

(b) $\dfrac{52}{7}$

(c) $\sqrt{6}$

(d) 6

Show Answer

Solution

(a) Given, data are 6, 5, 9, 13, 12, 8, and 10.

$\begin{array}{|c|c|} \hline x _ i & x _ i^2 \\ \hline 6 & 36 \\ 5 & 25 \\ 9 & 81 \\ 13 & 169 \\ 12 & 144 \\ 8 & 64 \\ 10 & 100 \\ \hline \Sigma x _ i=6 3 & \Sigma x _ i^ 2=619 \\ \hline \end{array}$

$\begin{aligned} \therefore \quad \mathrm{SD} & =\sigma=\sqrt{\dfrac{\Sigma x _ i^2}{N}-{\Big(\dfrac{\Sigma x _ i}{N}}\Big)^2}=\sqrt{\dfrac{619}{7}-\Big(\dfrac{63}{7}\Big)^2} \\ \\ & =\sqrt{\dfrac{7 \times 619-3969}{49}} \\ \\ & =\sqrt{\dfrac{4333-3969}{49}} \\ \\ & =\sqrt{\dfrac{364}{49}}=\sqrt{\dfrac{52}{7}}\end{aligned}$

$\therefore \quad \text{Option (a) is correct.}$

29. If $x _ 1, x _ 2, \ldots, x _ {n}$ be $n$ observations and $\bar{x}$ be their arithmetic mean. Then, formula for the standard deviation is given by

(a) $\Sigma(x _ {i}-\bar{x})^{2}$

(c) $\sqrt{\dfrac{\sum(x _ {i}-\bar{x})^{2}}{n}}$

(b) $\dfrac{\Sigma(x _ {i}-\bar{x})^{2}}{n}$

(d) $\sqrt{\dfrac{\sum x _ i^{2}}{n}+\bar x^{-2}}$

Show Answer

Solution

(c) SD is given by $ \sigma=\sqrt{\dfrac{\sum(x _ {i}-\bar{x})^{2}}{n}} $

  • Option (a) $\Sigma(x _ {i}-\bar{x})^{2}$ is incorrect because it represents the sum of squared deviations from the mean, not the standard deviation. The standard deviation requires taking the square root of the average of these squared deviations.

  • Option (b) $\dfrac{\Sigma(x _ {i}-\bar{x})^{2}}{n}$ is incorrect because it represents the variance, not the standard deviation. The standard deviation is the square root of the variance.

  • Option (d) $\sqrt{\dfrac{\sum x _ i^{2}}{n}+\bar x^{-2}}$ is incorrect because it does not correctly represent the formula for standard deviation. The term $\bar x^{-2}$ is not part of the standard deviation formula and the correct formula involves the squared deviations from the mean, not the sum of squares of the observations divided by the number of observations.

30. If the mean of 100 observations is 50 and their standard deviation is 5 , than the sum of all squares of all the observations is

(a) 50000

(b) 250000

(c) 252500

(d) 255000

Show Answer

Solution

(c) Given,

$\bar{x}=50, n =100 \text { and } \sigma=5 $

$\Sigma x _ i^{2} =? $

$\bar{x} =\dfrac{\Sigma x _ {i}}{n}$

$\Rightarrow \quad 50=\dfrac{\Sigma x _ {i}}{100} $

$\therefore \quad \Sigma x _ {i}=50 \times 100=5000$

$ \begin{aligned} & \text { Now, } \\ \\ & \Rightarrow \sigma=\sqrt{\dfrac{\Sigma x _ i^{2}}{n}-\dfrac{\sum x _ {i}{ }^{2}}{n}} \\ \\ & \Rightarrow \sigma^{2}=\dfrac{\sum x _ i^{2}}{n}-(\bar{x})^{2} \\ \\ & \Rightarrow \quad 25=\dfrac{\Sigma x _ i^{2}}{100}-(50)^{2} \\ \\ & \Rightarrow 25=\dfrac{\Sigma x _ i^{2}}{100}-2500 \\ \\ & \Rightarrow \quad 2525=\dfrac{\Sigma x _ i^{2}}{100} \\ \\ & \therefore \quad \Sigma x _ i^{2}=252500 \end{aligned} $

$\therefore \quad \text{Option (c) is correct.}$

31. If $a, b, c, d$ and $e$ be the observations with mean $m$ and standard deviation $s$, then find the standard deviation of the observations $a+k$, $b+k, c+k, d+k$ and $e+k$ is

(a) $s$

(b) $k s$

(c) $s+k$

(d) $\dfrac{s}{k}$

Show Answer

Solution

(a) Given observations are $a, b, c, d$ and $e$.

$ \begin{aligned} \text { Mean } & =m=\dfrac{a+b+c+d+e}{5} \\ \\ \Sigma x _ {i} & =a+b+c+d+e=5 m \\ \\ \text { Now, } & \\ \\ \text { mean } & =\dfrac{a+k+b+k+c+k+d+k+e+k}{5} \\ \\ & =\dfrac{(a+b+c+d+e)+5 k}{5}=m+k \\ \\ \therefore \quad SD & =\sqrt{\dfrac{\sum(x _ {i}+k)^{2}}{n}-(m+k)^{2}} \\ \\ & =\sqrt{\dfrac{\sum(x _ i^{2}+k^{2}+2 k x _ {i})}{n}-(m^{2}+k^{2}+2 m k)} \\ \\ & =\sqrt{\dfrac{\Sigma x _ i^{2}}{n}-m^{2}+\dfrac{2 k \Sigma x _ {i}}{n}-2 m k} \\ \\ & =\sqrt{\dfrac{\Sigma x _ i^{2}}{n}-m^{2}+2 k m-2 m k} \quad \left[\because \quad \dfrac{\Sigma x _ {i}}{n}=m\right] \\ \\ & =\sqrt{\dfrac{\Sigma x _ i^{2}}{n}-m^{2}} \\ \\ & =s \end{aligned} $

$\therefore \quad \text{Option (a) is correct.}$

32. If $x _ 1, x _ 2, x _ 3, x _ 4$ and $x _ 5$ be the observations with mean $m$ and standard deviation $s$ then, the standard deviation of the observations $k x _ 1, k x _ 2$, $k x _ 3, k x _ 4$ and $k x _ 5$ is

(a) $k+s$

(b) $\dfrac{s}{k}$

(c) $k s$

(d) $s$

Show Answer

Solution

(c) Here,

$ \begin{aligned} m & =\dfrac{\Sigma x _ {i}}{5}, s=\sqrt{\dfrac{\Sigma x _ i^{2}}{5}-\Big(\dfrac{\Sigma x _ {i}}{5}\Big)^2} \\ \\ SD & =\sqrt{\dfrac{k^{2} \Sigma x _ i^{2}}{5}-\Big(\dfrac{k \Sigma x _ {i}{ }}{5}\Big)^{2}} \\ \\ & =\sqrt{\dfrac{k^{2} \Sigma x _ i^{2}}{5}-k^{2} \Big(\dfrac{\Sigma x _ i}{5})^{2}} \\ \\ & =k\sqrt{\dfrac{\Sigma x _ i^{2}}{5}-{\left(\dfrac{\Sigma x _ {i}}{5}\right)^{2}}}=k s \end{aligned} $

$\therefore \quad \text{Option (c) is correct.}$

33. Let $x _ 1, x _ 2, \ldots x _ {n}$ be $n$ observations. Let $w _ {i}=l x _ {i}+k$ for $i=1,2, \ldots, n$, where $l$ and $k$ are constants. If the mean of $x _ {i}{ }^{\prime} s$ is 48 and their standard deviation is 12, the mean of $w _ {i}{ }^{\prime} s$ is 55 and standard deviation of $w _ {i}$ ’s is 15 , then the value of $l$ and $k$ should be

(a) $l=1.25, k=-5$

(b) $l=-1.25, k=5$

(c) $l=2.5, k=-5$

(d) $l=2.5, k=5$

Show Answer

Solution

(a) Given, $w _ {i}=x _ {i}+k, \bar x _ i=48, s x _ {i}=12, w _ {i}=55$ and $s w _ {i}=15$

Then, $\quad \bar w _ i=\bar x _ i+k $

[where, $\bar w _ i$ is mean $w _ {i}$ ’s and $\bar x _ i$ is mean of $x _ {i}{ }^{\prime} s$ ]

$\Rightarrow \quad 55=48+k \qquad…(i)$

Now, $\quad \text{SD of } w _ {i}= \text{ SD of } x _ {i}$

$\Rightarrow \quad 15=12$

$\Rightarrow \quad l=\dfrac{15}{12} =1.25\qquad…(ii) $

From Eqs. (i) and (ii),

$k=55-1.25 \times 48=-5$

$\therefore \quad \text{Option (a) is correct.}$

34. The standard deviations for first natural numbers is

(a) 5.5

(b) 3.87

(c) 2.97

(d) 2.87

Show Answer

Solution

(d) We know that, SD of first $n$ natural number $=\sqrt{\dfrac{n^{2}-1}{12}}$

$\therefore \quad $ SD of first 10 natural numbers $=\sqrt{\dfrac{(10)^{2}-1}{12}}$

$ \hspace{4.6cm}=\sqrt{\dfrac{100-1}{12}}=\sqrt{\dfrac{99}{12}}$

$\hspace{4.6cm}=\sqrt{8.25}=2.87 $

  • Option (a) 5.5 is incorrect because the standard deviation of the first 10 natural numbers is calculated using the formula $\sqrt{\dfrac{n^{2}-1}{12}}$, which does not yield 5.5.

  • Option (b) 3.87 is incorrect because, when applying the formula $\sqrt{\dfrac{n^{2}-1}{12}}$ to the first 10 natural numbers, the result is not 3.87.

  • Option (c) 2.97 is incorrect because the correct calculation using the formula $\sqrt{\dfrac{n^{2}-1}{12}}$ for the first 10 natural numbers results in 2.87, not 2.97.

35. Consider the numbers $1,2,3,4,5,6,7,8,9$, and 10 . If 1 is added to each number the variance of the numbers, so obtained is

(a) 6.5

(b) 2.87

(c) 3.87

(d) 8.25

Show Answer

Solution

(d) Given numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

If 1 is added to each number, then observations will be 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 .

$ \begin{aligned} \therefore \quad \sum x _ {i}& =2+3+4+\ldots+11 \\ \\ & =\dfrac{10}{2}[2 \times 2+9 \times 1]=5[4+9]=65 \\ \\ \Sigma x _ i^{2}&=2^{2}+3^{2}+4^{2}+5^{2}+\ldots+11^{2} \\ \\ & =(1^{2}+2^{2}+3^{2}+\ldots+11^{2})-(1^{2}) \\ \\ & =\dfrac{11 \times 12 \times 23}{6}-1 \\ \\ & =\dfrac{11 \times 12 \times 23-6}{6}=505 \end{aligned} $

$ \begin{aligned} \therefore \quad s^{2} & =\dfrac{\Sigma x _ i^{2}}{n}-{\Big(\dfrac{\Sigma x _ {i}}{n}\Big)}^{2}=\dfrac{505}{10}-\Big(\dfrac{65}{10}\Big)^{2} \\ \\ & =50.5-(6.5)^{2} \\ \\ & =50.5-42.25 \\ \\ & =8.25 \end{aligned} $

$\therefore \quad \text{Option (d) is correct.}$

36. Consider the first 10 positive integers. If we multiply each number by -1 and, then add 1 to each number, the variance of the numbers, so obtained is

(a) 8.25

(b) 6.5

(c) 3.87

(d) 2.87

Show Answer

Solution

(a) Since, the first 10 positive integers are1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

On multiplying each number by -1 , we get

$ -1,-2,-3,-4,-5,-6,-7,-8,-9,-10 $

On adding 1 in each number, we get

$\therefore \quad 0,-1,-2,-3,-4,-5,-6,-7,-8,-9 $

$0+(-1)+(-2)+(-3)………+(-8)+(-9)=-\dfrac{9 \times 10}{2}=-45 $

$\text { and } \quad \Sigma x _ i^{2}=0^{2}+(-1)^{2}+(-2)^{2}+\ldots+(-9)^{2}$

$\hspace{1.7cm}=\dfrac{9 \times 10 \times 19}{6}=285 $

$\therefore \quad SD =\sqrt{\dfrac{285}{10}-\Big(\dfrac{-45}{10}\Big)^2}=\sqrt{\dfrac{285}{10}-\dfrac{2025}{100}} $

$\hspace{1.3cm}=\sqrt{\dfrac{2850-2025}{100}}=\sqrt{8.25}$

$\text { Now, } \quad \text { variance } =(SD)^{2}=(\sqrt{8.25})^{2}=8.25$

$\therefore \quad \text{Option (a) is correct.}$

37. The following information relates to a sample of size $60, \Sigma x^{2}=18000$, and $\Sigma x=960$. Then, the variance is

(a) 6.63

(b) 16

(c) 22

(d) 44

Show Answer

Solution

(d)

$ \text { Variance }=\dfrac{\Sigma x _ i^{2}}{n}-\Big(\dfrac{\Sigma x _ {i}}{n}\Big)^2 $

$\hspace{1.7cm}=\dfrac{18000}{60}-\Big(\dfrac{960}{60}\Big)^{2}=300-256=44$

$\therefore \quad \text{Option (d) is correct.}$

38. If the coefficient of variation of two distributions are 50,60 and their arithmetic means are 30 and 25 respectively, then the difference of their standard deviation is

(a) 0

(b) 1

(c) 1.5

(d) 2.5

Show Answer

Solution

(a) $\text{Here},\quad CV _ 1=50, CV _ 2=60, \bar x _ 1=30 \text { and } \bar x _ 2=25$

$ \therefore \quad CV _ 1=\dfrac{\sigma _ 1}{\bar x _ 1} \times 100 $

$\Rightarrow\quad 50=\dfrac{\sigma _ 1}{30} \times 100 $

$\therefore \quad \sigma _ 1=\dfrac{30 \times 50}{100}=15 \text { and } CV _ 2=\dfrac{\sigma _ 2}{\bar x _ 2} \times 100 $

$\Rightarrow \quad 60=\dfrac{\sigma _ 2}{25} \times 100 $

$\therefore \quad \sigma _ 2=\dfrac{60 \times 25}{100}=15 $

$\text { Now, }\quad \sigma _ 1-\sigma _ 2=15-15=0 $

$\therefore \quad \text{Option (a) is correct.}$

39. The standard deviation of some temperature data in ${ }^{\circ} C$ is 5 . If the data were converted into ${ }^{\circ} F$, then the variance would be

(a) 81

(b) 57

(c) 36

(d) 25

Show Answer

Solution

(a) Given, $\quad\sigma _ {C}=5 $

$\Rightarrow\quad \dfrac{5}{9}(F-32)=C$

$ \begin{aligned} F & =\dfrac{9 C}{5}+32 \\ \\ \sigma _ {F} & =\dfrac{9}{5} \sigma _ {C}=\dfrac{9}{5} \times 5=9 \end{aligned} $

Here, $\quad \sigma _ F^{2}=(9)^{2}=81 $

$\therefore \quad \text{Option (a) is correct.}$

Fillers

40. Coefficient of variation $=\dfrac{\cdots}{\text { Mean }} \times 100$

Show Answer

Solution

$C V=\dfrac{S D}{\text { Mean }} \times 100$

41. If $\bar{x}$ is the mean of $n$ values of $x$, then $\sum _ {i=1}^{n}(x _ 1-\bar{x})$ is always equal to ……

If $a$ has any value other than $\overline{\boldsymbol{x}}$, then $\sum _ {i=1}^{n}(x _ i-\overline{\boldsymbol{x}})^{2}$ …… is than $\Sigma(x _ {i}-a)^{2}$

Show Answer

Solution

If $\bar{x}$ is the mean of $n$ values of $x$, then $\sum _ {i=1}^{n}(x _ {i}-\bar{x})=0$ and if $a$ has any value other than $\bar{x}$, then $\sum _ {i=1}^{n}(x _ {i}-\bar{x})^{2}$ is less than $\sum(x _ {i}-a)^{2}$

42. If the variance of a data is 121 , then the standard deviation of the data is ……

Show Answer

Solution

If the variance of a data is 121 .

Then,

$ \begin{aligned} S D & =\sqrt{\text { Variance }} \\ \\ & =\sqrt{121}=11 \end{aligned} $

43. The standard deviation of a data is …… of any change in origin, but is …… on the change of scale.

Show Answer

Solution

The standard deviation of a data is independent of any change in origin but is dependent of change of scale.

44. The sum of squares of the deviations of the values of the variable is …… when taken about their arithmetic mean.

Show Answer

Solution

The sum of the squares of the deviations of the values of the variable is minimum when taken about their arithmetic mean.

45. The mean deviation of the data is …… when measured from the median.

Show Answer

Solution

The mean deviation of the data is least when measured from the median.

46. The standard deviation is …… to the mean deviation taken from the arithmetic mean.

Show Answer

Solution

The SD is greater than or equal to the mean deviation taken from the arithmetic mean.