Chapter 6 Thermodynamics
Exercise
6.1 Choose the correct answer.
A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Show Answer
Answer
A thermodynamic state function is a quantity whose value is independent of a path.
Functions like $p, V, T$ etc. depend only on the state of a system and not on the path.
Hence, alternative (ii) is correct.
6.2 For the process to occur under adiabatic conditions, the correct condition is:
(i) $\Delta T=0$
(ii) $\Delta p=0$
(iii) $q=0$
(iv) $\mathrm{w}=0$
Show Answer
Answer
A system is said to be under adiabatic conditions if there is no exchange of heat between the system and its surroundings. Hence, under adiabatic conditions, $q=0$.
Therefore, alternative (iii) is correct.
6.3 The enthalpies of all elements in their standard states are:
(i) unity
(ii) zero
(iii) $<0$
(iv) different for each element
Show Answer
Answer
The enthalpy of all elements in their standard state is zero.
Therefore, alternative (ii) is correct.
6.4 $\Delta U^{\ominus}$ of combustion of methane is $-\mathrm{X}\ \mathrm{kJ} \ \mathrm{mol}^{-1}$. The value of $\Delta H^{\ominus}$ is
(i) $=\Delta U^{\ominus}$
(ii) $>\Delta U^{\ominus}$
(iii) $<\Delta U^{\ominus}$
(iv) $=0$
Show Answer
Answer
Since $ \Delta H^{\ominus} = \Delta U^{\ominus} + \Delta n_gRT \text{ and } \Delta U^{\ominus} = -X\ kJ \ mol^{-1} $
$\Delta H^{\ominus}=(-X)+\Delta n_g R T$.
For combustion of methane:
$CH_4(g) + 2O_2(g)\rightarrow CO_2(g) + 2H_2O(l)$
$\Delta n_g = n_p - n_r$
$= 1-(2+1)= -2$
$\therefore \Delta H^{\ominus}= -X - 2RT$
$\Rightarrow \Delta H^{\ominus}<\Delta U^{\ominus}$
Therefore, alternative (iii) is correct.
6.5 The enthalpy of combustion of methane, graphite and dihydrogen at $298 \mathrm{~K}$ are, $-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Enthalpy of formation of $\mathrm{CH_4}(\mathrm{~g})$ will be
(i) $-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(ii) $-52.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iv) $+52.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
According to the question, (i) $\quad CH_4 {(g)}+2 O_2 {(g)} \longrightarrow CO_2 {(g)}+2 H_2 O {(g)}$
$ \Delta H=-890.3\ kJ \ mol^{-1} $
(ii) $C {(s)}+O_2 {(g)} \longrightarrow CO_2 {(g)}$
$ \Delta H=-393.5\ kJ \ mol^{-1} $
(iii) $2 H_2 {(g)}+O_2 {(g)} \longrightarrow 2 H_2 O {(g)}$
$ \Delta H=-285.8\ kJ \ mol^{-1} $
Thus, the desired equation is the one that represents the formation of $CH_4$ (g) i.e.,
$C {(s)}+2 H_2 {(g)} \longrightarrow CH_4 {(g)}$
$\Delta_f H _{CH_4}=\Delta_c H_C+2 \Delta_c H _{H_2}-\Delta_c H _{CH_4}$
$=[-393.5+2(-285.8)-(-890.3)]\ kJ \ mol^{-1}$
$=-74.8\ kJ \ mol^{-1}$
$\therefore$ Enthalpy of formation of $CH _4 {(g)}=- 74.8\ kJ\ mol^{-1}$
Hence, alternative (i) is correct.
6.6 A reaction, $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{q}$ is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(v) possible at any temperature
Show Answer
Answer
For a reaction to be spontaneous, $\Delta G$ should be negative.
$\Delta G=\Delta H-T \Delta S$
According to the question, for the given reaction,
$\Delta S=$ positive
$\Delta H=$ negative (since heat is evolved)
$\Rightarrow \Delta G=$ negative
Therefore, the reaction is spontaneous at any temperature.
Hence, alternative (iv) is correct.
6.7 In a process, $701 \mathrm{~J}$ of heat is absorbed by a system and $394 \mathrm{~J}$ of work is done by the system. What is the change in internal energy for the process?
Show Answer
Answer
According to the first law of thermodynamics,
$\Delta U=q+w \quad…(i)$
Where,
$\Delta U=$ change in internal energy for a process
$q=$ heat
$w=$ work
Given,
$q=+701\ J$ (Since heat is absorbed)
w= $-394\ J$ (Since work is done by the system)
Substituting the values in expression (i), we get
$\Delta U=701\ J+(-394\ J)$
$\Delta U=307\ J$
Hence, the change in internal energy for the given process is $307 J$.
6.8 The reaction of cyanamide, $\mathrm{NH_2} \mathrm{CN}$ (s), with dioxygen was carried out in a bomb calorimeter, and $\Delta U$ was found to be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $298 \mathrm{~K}$. Calculate enthalpy change for the reaction at $298 \mathrm{~K}$.
$\mathrm{NH_2} \mathrm{CN}(\mathrm{s})+\dfrac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{N_2}(\mathrm{~g})+\mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{l})$
Show Answer
Answer
Enthalpy change for a reaction $(\Delta H)$ is given by the expression,
$\Delta H=\Delta U+\Delta n_g R T$
Where,
$\Delta U=$ change in internal energy
$\Delta n_g=$ change in number of gaseous moles
For the given reaction,
$\Delta n_g=\sum n_g$ (products) - $\sum n_g$ (reactants)
=(2 - 1.5) moles
$\Delta n_g=0.5$ moles
And,
$\Delta U=-742.7\ kJ \ mol^{-1}$
$T=298 K$
$R=8.314 \times 10^{-3}\ kJ \ mol^{-1} K^{-1}$
Substituting the values in the expression of $\Delta H$ :
$\Delta H=(-742.7\ kJ \ mol^{-1})+(0.5\ mol)(298\ K)(8.314 \times 10^{-3}\ kJ \ mol^{-1} K^{-1})$
$=-742.7+1.2$
$\Delta H=-741.5\ kJ \ mol^{-1}$
6.9 Calculate the number of $\mathrm{kJ}$ of heat necessary to raise the temperature of $60.0 \mathrm{~g}$ of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of $\mathrm{Al}$ is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
Show Answer
Answer
From the expression of heat $(q)$,
$q=n . C_m . \Delta T$
Where,
$C_m=$ molar heat capacity
$n=$ no. of moles
$\Delta T=$ change in temperature
Substituting the values in the expression of $q$ :
$q=(\dfrac{60}{27} mol)(24\ J\ mol^{-1} K^{-1})(20\ K)$
$q=1066.7\ J$
$q=1.07\ kJ$
6.10 Calculate the enthalpy change on freezing of $1.0 \mathrm{~mol}$ of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10.0^{\circ} \mathrm{C}$. $\Delta_{\text {fus }} H=6.03 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}$.
$$ \begin{aligned} & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{s})\right]=36.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned} $$
Show Answer
Answer
Total enthalpy change involved in the transformation is the sum of the following changes: (a) Energy change involved in the transformation of $1\ mol$ of water at $10^{\circ} C$ to $1 mol$ of water at $0^{\circ} C$.
(b) Energy change involved in the transformation of $1\ mol$ of water at $0^{\circ}$ to $1 mol$ of ice at $0^{\circ} C$.
(c) Energy change involved in the transformation of $1\ mol$ of ice at $0^{\circ} C$ to $1 mol$ of ice at $-10^{\circ} C$.
Total $\Delta H=C_p[H_2 O(l)] \Delta T+\Delta H _{\text{freezing }}+C_p[H_2 O {(s)}] \Delta T$
=$ (75.3\ J\ mol^{-1}K^{-1})(0-10)K + (-6.03 \times 10^3\ J\ mol^{-1} ) + (36.8\ J\ mol^{-1}K^{-1})(-10-0)K $
$=-7151\ J\ mol^{-1}$
Hence, the enthalpy change involved in the transformation is -$7.151\ kJ\ mol^{- 1}$.
6.11 Enthalpy of combustion of carbon to $\mathrm{CO_2}$ is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the heat released upon formation of $35.2 \mathrm{~g}$ of $\mathrm{CO_2}$ from carbon and dioxygen gas.
Show Answer
Answer
Formation of $CO_2$ from carbon and dioxygen gas can be represented as:
$C {(s)}+O_2 {(g)} \longrightarrow CO_2 {(g)} \quad \Delta_f H=-393.5\ kJ \ mol^{-1}$
$(1$ mole $=44 g)$
Heat released on formation of $44\ g\ CO_2=- 393.5\ kJ\ mol^{-1}$
$\therefore$ Heat released on formation of $35.2\ g\ CO_2$
$=\dfrac{-393.5\ kJ \ mol^{-1}}{44 g} \times 35.2 g$
$=- 314.8\ kJ \ mol^{-1}$
6.12 Enthalpies of formation of $\mathrm{CO}(\mathrm{g}), \mathrm{CO_2}(\mathrm{~g}), \mathrm{N_2} \mathrm{O}(\mathrm{g})$ and $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g})$ are $-110,-393,81$ and $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Find the value of $\Delta_{r} H$ for the reaction: $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N_2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO_2}(\mathrm{~g})$
Show Answer
Answer
$\Delta_r H$ for a reaction is defined as the difference between $\Delta_fH$ value of products and $\Delta_f H$ value of reactants.
$\Delta_r H=\sum \Delta_f H$ (products) $-\sum \Delta_f H$ (reactants)
For the given reaction,
$N_2 O _4 {(g)}+3 CO {(g)} \longrightarrow N_2 O {(g)}+3 CO _{2}{(g)}$
$\Delta_r H=[\Delta_f H(N_2 O)+3 \Delta_f H(CO_2)]-[\Delta_f H(N_2 O_4)+3 \Delta_f H(CO)]$
Substituting the values of $\Delta_f H$ for $N_2 O, CO_2, N_2 O_4$ and $CO$ from the question, we get:
$\Delta_r H=[81\ kJ \ mol^{-1}+3(-393)\ kJ \ mol^{-1}]-[9.7\ kJ \ mol^{-1}+3(-110)\ kJ \ mol^{-1}]$
$\Delta_r H=-777.7\ kJ \ mol^{-1}$
Hence, the value of $\Delta_r H$ for the reaction is $-777.7\ kJ \ mol^{-1}$.
6.13 Given
$\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH_3}(\mathrm{~g}) ; \Delta_{r} H^{\ominus}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
What is the standard enthalpy of formation of $\mathrm{NH_3}$ gas?
Show Answer
Answer
Standard enthalpy of formation of a compound is the change in enthalpy that takes place during the formation of 1 mole of a substance in its standard form from its constituent elements in their standard state.
Re-writing the given equation for 1 mole of $NH_3 {(g)}$.
$\dfrac{1}{2} N _2 {(g)}+\dfrac{3}{2} H_2 {(g)} \longrightarrow NH_3 {(g)}$
$\therefore$ Standard enthalpy of formation of $NH_3 {(g)}$
$=1 / 2 \Delta_r H^{\theta}$
$=1 / 2(-92.4\ kJ\ mol^{- 1})$
$=- 46.2\ kJ \ mol^{-1}$
6.14 Calculate the standard enthalpy of formation of $\mathrm{CH_3} \mathrm{OH(l)}$ from the following data:
$\mathrm{CH_3} \mathrm{OH}(\mathrm{l})+\dfrac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \Delta_{r} H^{\ominus}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}$ (graphite) $+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) ; \Delta_{c} H^{\ominus}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H_2}(\mathrm{~g})+\dfrac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(1) ; \Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
The reaction that takes place during the formation of $CH_3 OH{(l)}$ can be written as:
$C {(s)}+2 H_2 O {(g)}+\dfrac{1}{2} O_2 {(g)} \longrightarrow CH_3 OH _{(l)}\quad …(1)$
The reaction (1) can be obtained from the given reactions by following the algebraic calculations as:
Equation (ii) $+2 \times$ equation (iii) - equation (i)
$ \Delta _f H^{\ominus} [CH_3OH _{(l)}] = \Delta _cH^{\ominus} + 2\Delta _fH^{\ominus} [H _2O {(l)}] - \Delta _r H^{\ominus} $
$ = (-393\ kJ\ mol^{-1})+2(-286\ kJ \ mol^{-1})- (-726\ kJ \ mol^{-1}) $
$=(-393 -572+726)\ kJ \ mol^{-1}$
$\therefore \Delta_i H^{\ominus}[CH_3 OH {(l)}]=-239\ kJ\ mol^{-1}$
6.15 Calculate the enthalpy change for the process
$\mathrm{CCl_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{Cl}(\mathrm{g})$
and calculate bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ in $\mathrm{CCl_4}(\mathrm{~g})$.
$\Delta_{\text {vap }} H^{\ominus}\left(\mathrm{CCl_4}\right)=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta_{f} H^{\ominus}\left(\mathrm{CCl_4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta_{a} H^{\ominus}(\mathrm{C})=715.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, where $\Delta_{a} H^{\ominus}$ is enthalpy of atomisation
$\Delta_{a} H^{\ominus}\left(\mathrm{Cl_2}\right)=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
The chemical equations implying to the given values of enthalpies are:
(i) $CCl_4 {(l)} \longrightarrow CCl_4 {(g)}\ \Delta _{vap} H^{ \ominus }=30.5\ kJ\ mol^{-1 }$
(ii) $C {(s)} \longrightarrow C {(g)}\ \Delta _a H^{ \ominus }=715.0\ kJ \ mol^{-1}$
(iii) $Cl _2 {(g)} \longrightarrow 2 Cl {(g)}\ \Delta _a H^{ \ominus }=242\ kJ\ mol^{{-1}}$
(iv) $C {(s)}+2 Cl_2 {(g)} \longrightarrow CCl_4 {(l)}\ \Delta_f H=- 135.5\ kJ\ mol^{{-1}}$
Enthalpy change for the given process $CCl _4 {(g)} \longrightarrow C {(g)}+4 Cl {(g)}$, can be calculated using the following algebraic calculations as:
Equation (ii) +2 × Equation (iii) -Equation (i) - Equation (iv)
$\Delta_r H=\Delta _a H^{ \ominus }(C)+2 \Delta _a H^{ \ominus }(Cl_2) - \Delta _{\text{vap }} H^{\ominus} - \Delta_f H$
$\Delta_r H=715.0+(2 \times 242 )- 30.5 -(- 135.5)$
$\therefore \Delta H=1304\ kJ \ mol^{-1}$
Bond enthalpy of $C - Cl$ bond in $CCl _4 {(g)}$
$=\dfrac{1304}{4}\ kJ \ mol^{-1}$
$=326\ kJ\ mol^{- 1}$
6.16 For an isolated system, $\Delta U=0$, what will be $\Delta S$ ?
Show Answer
Answer
$\Delta S=\dfrac{q_{rev}}{T}=\dfrac{\Delta H}{T}=\dfrac{\Delta U + P \Delta V}{T}$
$\Delta S= \dfrac{P \Delta V}{T}$
Since $\Delta U=0, \Delta S$ will be positive and the reaction will be spontaneous.
6.17 For the reaction at $298 \mathrm{~K}$,
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$
$\Delta H=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
At what temperature will the reaction become spontaneous considering $\Delta H$ and $\Delta S$ to be constant over the temperature range.
Show Answer
Answer
From the expression,
$\Delta G=\Delta H- T \Delta S$
Assuming the reaction at equilibrium, $\Delta T$ for the reaction would be:
$T=(\Delta H-\Delta G) \dfrac{1}{\Delta S}$
$=\dfrac{\Delta H}{\Delta S} {(\Delta G=0 \text{ at equilibrium })}$
$=\dfrac{400\ kJ \ mol^{-1}}{0.2\ kJ\ K^{-1} mol^{-1}}$
$T=2000 K$
For the reaction to be spontaneous, $\Delta G$ must be negative. Hence, for the given reaction to be spontaneous, Temperature should be greater than $2000 K$.
6.18 For the reaction,
$2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl_2}(\mathrm{~g})$, what are the signs of $\Delta H$ and $\Delta S$ ?
Show Answer
Answer
$\Delta H$ and $\Delta S$ are negative
The given reaction represents the formation of chlorine molecule from chlorine atoms. Here, bond formation is taking place. Therefore, energy is being released. Hence, $\Delta H$ is negative.
Also, two moles of atoms have more randomness than one mole of a molecule. Since spontaneity is decreased, $\Delta S$ is negative for the given reaction.
6.19 For the reaction
$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g})$
$\Delta U^{\ominus}=-10.5 \mathrm{~kJ}$ and $\Delta S^{\ominus}=-44.1\ \mathrm{J\ K}^{-1}$.
Calculate $\Delta G^{\ominus}$ for the reaction, and predict whether the reaction may occur spontaneously.
Show Answer
Answer
For the given reaction,
$2 A {(g)}+B {(g)} \to 2 D {(g)}$
$\Delta n_g=2 - 3$
$=-1$ mole
Substituting the value of $\Delta U^{\ominus}$, in the expression of $\Delta H$ :
$\Delta H^{\ominus}=\Delta U^{\ominus}+\Delta n_g R T$
$=(-10.5\ kJ)+(-1)(8.314 \times 10^{-3}\ kJ\ K^{-1} mol^{-1})(298\ K)$
$=-10.5\ kJ-2.48\ kJ$
$\Delta H^{\ominus}=-12.98\ kJ$
Substituting the values of $\Delta H^{\ominus}$, and $\Delta S^{\ominus}$, in the expression of $\Delta G^{\ominus}$ :
$ \Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus} $
$=-12.98\ kJ-(298\ K)(-44.1\times 10^{-3}\ J K^{-1})$
$=-12.98\ kJ+13.14\ kJ$
$\Delta G^{\ominus}=+0.16\ kJ$
Since $\Delta G^{\ominus}$, for the reaction is positive, the reaction will not occur spontaneously.
6.20 The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\ominus}$ ? $\mathrm{R}=8.314 \mathrm\ {J\ K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=300 \mathrm{~K}$.
Show Answer
Answer
From the expression,
$\Delta G^{\ominus}=-2.303 R T \log K _{e q}$
$\Delta G^{\ominus}$ for the reaction,
$=-(2.303)(8.314\ J\ K^{-1} mol^{-1})(300 K) \log 10$
$=-5744.14\ J\ mol^{-1}$
$=-5.744\ kJ \ mol^{-1}$
6.21 Comment on the thermodynamic stability of $\mathrm{NO}(\mathrm{g})$, given
$\dfrac{1}{2} \mathrm{~N_2}(\mathrm{~g})+\dfrac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) ; \quad \Delta_{r} H^{\ominus}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{NO}(\mathrm{g})+\dfrac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO_2}(\mathrm{~g}): \Delta_{r} H^{\ominus}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Show Answer
Answer
The positive value of $\Delta_r H$ indicates that heat is absorbed during the formation of $NO {(g)}$. This means that $NO {(g)}$ has higher energy than the reactants ($N_2$ and $O_2$ ). Hence, $NO {(g)}$ is unstable.
The negative value of $\Delta_r H$ indicates that heat is evolved during the formation of $NO _2 {(g)}$ from $NO {(g)}$ and $O_2 {(g)}$. The product, $NO_2 {(g)}$ is stabilized with minimum energy.
Hence, unstable $NO {(g)}$ changes to stable $NO_2 {(g)}$.
6.22 Calculate the entropy change in surroundings when $1.00 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}(l)$ is formed under standard conditions. $\Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Show Answer
Answer
It is given that $286\ kJ\ mol^{{-1}}$ of heat is evolved on the formation of $1\ mol$ of $H_2 O (l)$. Thus, an equal amount of heat will be absorbed by the surroundings.
$q _{\text{surr }}=+286\ kJ\ mol^{- 1}$
Entropy change $(\Delta S _{\text{surr }})$ for the surroundings $=\dfrac{q _{\text{surr }}}{T}$ $=\dfrac{286\ kJ \ mol^{-1}}{298\ K}$ $\therefore \Delta S _{\text{surr }}=959.73\ J\ mol^{-1} K^{-1}$