Unit 2 Solutions (Intext Questions-1)
Intext Questions
2.1 Calculate the mass percentage of benzene $({C_6} {H_6})$ and carbon tetrachloride $({CCl_4})$ if $22 {~g}$ of benzene is dissolved in $122 {~g}$ of carbon tetrachloride.
Show Answer
Answer
Mass percentage of ${C_6} {H_6}$ $=\dfrac{\text { Mass of } {C_6} {H_6}}{\text { Total mass of the solution }} \times 100 \% $
$ \begin{aligned} & \hspace{4.4cm} =\dfrac{\text { Mass of } {C_6} {H_6}}{\text { Mass of } {C_6} {H_6}+\text { Mass of } {CCl_4}} \times 100 \% \\ & \hspace{4.4cm} =\dfrac{22}{22+122} \times 100 \% \\ & \hspace{4.4cm} =15.28 \% \end{aligned} $
Mass percentage of ${CCl_4}$ $ =\dfrac{\text { Mass of } {CCl_4}}{\text { Total mass of the solution }} \times 100 \% $
Mass percentage of ${CCl_4}$ $ =\dfrac{\text { Mass of } {CCl_4}}{\text { Mass of } {C_6} {H_6}+\text { Mass of } {CCl_4}} \times 100 \% $
$ \hspace{4.4cm} =\dfrac{122}{22+122} \times 100 \%$
$ \hspace{4.4cm}=84.72 \%$
Alternatively,
Mass percentage of ${CCl_4}=(100-15.28) \%$
$ \hspace{4.5cm}=84.72 \%$
2.2 Calculate the mole fraction of benzene in solution containing $30 \%$ by mass in carbon tetrachloride.
Show Answer
Answer
Let the total mass of the solution be $100 {~g}$ and the mass of benzene be $30 {~g}$.
$\therefore$ Mass of carbon tetrachloride $=(100-30) {g}$ $=70 {~g}$
Molar mass of benzene $({C_6} {H_6})=(6 \times 12+6 \times 1) {g} {mol}^{-1}$ $=78 {~g} {~mol}^{-1}$
$\therefore$ Number of moles of ${C_6} {H_6}=\dfrac{30}{78} {~mol}$ $=0.3846 {~mol}$
Molar mass of carbon tetrachloride $({CCl_4})=1 \times 12+4 \times 35.5$ $=154 {~g} {~mol}^{-1}$
$\therefore$ Number of moles of ${CCl_4}=\dfrac{70}{154} {~mol}$ $=0.4545 {~mol}$
$ \begin{aligned} &\text {Thus, the mole fraction of }{C_6} {H_6} \text { is given as } =\dfrac{\text { Number of moles of } {C_6} {H_6}}{\text { Number of moles of } {C_6} {H_6}+\text { Number of moles of } {CCl_4}} \end{aligned} $
$ \hspace{8.1cm} =\dfrac{0.3846}{0.3846+0.4545}$
$ \hspace{8.1cm} = 0.458$
2.3 Calculate the molarity of each of the following solutions:
(a) $30 {~g}$ of ${Co}({NO_3})_{2} .6 {H_2} {O}$ in $4.3 {~L}$ of solution
(b)30 ${mL}$ of $0.5 {M} {H_2} {SO_4}$ diluted to $500 {~mL}$.
Show Answer
Answer
Molarity is given by:
$ \text { Molarity }=\dfrac{\text { Moles of solute }}{\text { Volume of solution in litre }} $
(a) Molar mass of ${Co}({NO_3})_{2} \cdot 6 {H_2} {O}=59+2(14+3 \times 16)+6 \times 18$ $=291 {~g} {~mol}^{-1}$
$\therefore$ Moles of ${Co}({NO_3})_{2} \cdot 6 {H_2} {O}=\dfrac{30}{291} {~mol}$ $=0.103 {~mol}$
Therefore, molarity $=\dfrac{0.103 {~mol}}{4.3 {~L}}$ $=0.023\hspace{0.5mm} {M}$
(b) Number of moles present in $1000 {~mL}$ of $0.5 {M} {H_2} {SO_4}=0.5 {~mol}$
$\therefore$ Number of moles present in $30 {~mL}$ of $0.5 {M} {H_2} {SO_4}=\dfrac{0.5 \times 30}{1000} {~mol}$ $=0.015 {~mol}$
Therefore, molarity $ =\dfrac{0.015}{0.5 {~L}} {~mol} $ $=0.03 {M}$
2.4 Calculate the mass of urea $({NH_2} {CONH_2})$ required in making $2.5 {~kg}$ of 0.25 molal aqueous solution.
Show Answer
Answer
Molar mass of urea $({NH_2} {CONH_2})=2(1 \times 14+2 \times 1)+1 \times 12+1 \times 16$ $=60 {~g} {~mol}^{-1}$
0.25 molar aqueous solution of urea means: $1000 {~g}$ of water contains $0.25 {~mol}=(0.25 \times 60) {g}$ of urea
$ \hspace{13.5cm} = 15 {~g}$ of urea
That is, $(1000+15) {g}$ of solution contains $15 {~g}$ of urea
Therefore, $2.5 {~kg}(2500 {~g})$ of solution contains $ =\dfrac{15 \times 2500}{1000+15} {~g} $
$ \hspace{8cm} =36.95 {~g}$
$ \hspace{8cm} = 37 {~g}$ of urea (approximately)
Hence, mass of urea required $=37 {~g}$
Note : There is a slight variation in this answer and the one given in the NCERT textbook.
2.5 Calculate (a)molality (b)molarity and (c)mole fraction of ${KI}$ if the density of $20 \%$ (mass/mass) aqueous ${KI}$ is $1.202 {~g} {~mL}^{-1}$.
Show Answer
Answer
(a) Molar mass of ${KI}=39+127=166 {~g} {~mol}^{-1}$
$20 \%$ (mass/mass) aqueous solution of ${KI}$ means $20 {~g}$ of ${KI}$ is present in $100 {~g}$ of solution.
That is,$20 {~g}$ of KI is present in $(100-20) {g}$ of water $=80 {~g}$ of water
Therefore, molality of the solution $ =\dfrac{\text { Moles of KI }}{\text { Mass of water in } {kg}} $
$ \hspace{5.9cm} = \dfrac{\dfrac{20}{166}}{0.08} {~m}$ $=1.506 {~m}$
$ \hspace{5.9cm} =1.51 {~m}$ (approximately)
(b) It is given that the density of the solution $=1.202 {~g} {~mL}^{-1}$
$\hspace{5.9cm} Volume=\dfrac{\text { Mass }}{\text { Density }} $
$ \hspace{7.5cm}=\dfrac{100 {~g}}{1.202 {~g} {~mL}^{-1}}$
$ \hspace{7.5cm}=83.19 {~mL}$
$ \hspace{7.5cm}=83.19 \times 10^{-3} {~L}$
Therefore, molarity of the solution $ =\dfrac{\dfrac{20}{166} {~mol}}{83.19 \times 10^{-3} {~L}} $
$ \hspace{6cm} =1.45\hspace{0.5mm} {M}$
(c) Moles of KI $ =\dfrac{20}{166}=0.12 {~mol} $
Moles of water $ =\dfrac{80}{18}=4.44 {~mol} $
Therefore, mole fraction of ${KI}$ $ =\dfrac{\text { Moles of KI }}{\text { Moles of KI }+ \text { Moles of water }} $ $ =\dfrac{0.12}{0.12+4.44} =0.0263$