Chapter 1 Sets EXERCISE 1.5

EXERCISE 1.5

1. Let $U=\{1,2,3,4,5,6,7,8,9\}, \ A=\{1,2,3,4\}, \ B=\{2,4,6,8\} \ $ and $ \ C=\{3,4,5,6\}$. Find

(i): $A^{\prime}$

(ii): $B^{\prime}$

(iii): $(A \cup C)^{\prime}$

(iv): $(A \cup B)^{\prime}$

(v): $(A^{\prime})^{\prime}$

(vi): $(B-C)^{\prime}$

Show Answer

Answer :

$U=\{1,2,3,4,5,6,7,8,9\}$

$A=\{1,2,3,4\}$

$B=\{2,4,6,8\}$

$C=\{3,4,5,6\}$

(i): $A^{\prime}=U-(A\cup C)=\{5,6,7,8,9\}$

(ii): $B^{\prime}=U-B=\{1,3,5,7,9\}$

(iii): $A \cup C=\{1,2,3,4,5,6\}$

$\therefore \ \ (A \cup C)^{\prime}=U-(A\cup C)=\{7,8,9\}$

(iv): $A \cup B=\{1,2,3,4,6,8\}$

$(A \cup B)^{\prime}=U-(A\cup B)=\{5,7,9\}$

(v): $(A^{\prime})^{\prime}=A=\{1,2,3,4\}$

(vi): $B-C=\{2,8\}$

$\therefore \ \ (B-C)^{\prime}=U-(B-C)=\{1,3,4,5,6,7,9\}$

2. If $U=\{a, b, c, d, e, f, g, h\}$, find the complements of the following sets :

(i): $A=\{a, b, c\}$

(ii): $B=\{d, e, f, g\}$

(iii): $C=\{a, c, e, g\}$

(iv): $D=\{f, g, h, a\}$

Show Answer

Answer :

$U=\{a, b, c, d, e, f, g, h\}$

(i): $A=\{a, b, c\}$

$A^{\prime}=U-A=\{d, e, f, g, h\} $

(ii): $B=\{d, e, f, g\}$

$\therefore \ \ B^{\prime}=U-B=\{a, b, c, h\}$

(iii): $C=\{a, c, e, g\}$

$\therefore \ \ C^{\prime}=U-C=\{b, d, f, h\}$

(iv): $D=\{f, g, h, a\}$

$\therefore \ \ D^{\prime}=U-D=\{b, c, d, e\}$

3. Taking the set of natural numbers as the universal set, write down the complements of the following sets:

(i): $\{x: x$ is an even natural number $\} \quad$

(ii): $\{x: x$ is an odd natural number $\}$

(iii): $\{x: x$ is a positive multiple of $3 \}$

(iv): $\{x: x$ is a prime number $\}$

(v): $\{x: x$ is a natural number divisible by $3$ and $5$ $\}$

(vi): $\{x: x$ is a perfect square $\} \quad$

(vii): $\{x: x$ is a perfect cube $\}$

(viii): $\{x: x+5=8\}$

(ix): $\{x: 2 x+5=9\}$

(x): $\{x: x \geq 7\}$

(xi): $\{x: x \in N$ and $2 x+1>10\}$

Show Answer

Answer :

$U=N$ : Set of natural numbers.

We know tha complement of a set A is given by $A’=U-A$

(i): $\{x: x$ is an even natural number $\}^{\prime}=\{x: x$ is an odd natural number $\}$

(ii): $\{x: x \text{ is an odd natural number }\}^{\prime}=\{x: x$ is an even natural number $\}$

(iii): $\{x: x \text{ is a positive multiple of } 3\}^{\prime}= \{x: x \in N$ and $x$ is not a multiple of $3 \} $

(iv): $\{x: x \text{ is a prime number }\}^{\prime}=\{x: x$ is a positive composite number and $x=1\}$

(v): $\{x: x \text{ is a natural number divisible by } 3 \text{ and } 5\}^{\prime}=\{x: x$ is a natural number that is not divisible by $3$ or $5$ $ \}$

(vi): $\{x: x \text{ is a perfect square }\}^{\prime}=\{x: x \in N$ and $x$ is not a perfect square $\}$

(vii): $\{x: x \text{ is a perfect cube }\}^{\prime}=\{x: x \in N$ and $x$ is not a perfect cube $\}$

(viii): $\{x: x+5=8\}^{\prime}=\{x: x \in N$ and $x \neq 3\}$

(ix): $\{x: 2 x+5=9\}^{\prime}=\{x: x \in N$ and $x \neq 2\}$

(x): $\{x: x \ {\geq 7}^{\prime}=\{x: x \in N$ and $x<7\}$

(xi): $\{x: x \in N \text{ and } 2 x+1>10\}^{\prime}=\{x: x \in N$ and $x \leq 9 / 2\}$

4. If $U=\{1,2,3,4,5,6,7,8,9\}, \ A=\{2,4,6,8\} \ $ and $ \ B=\{2,3,5,7\}$. Verify that

(i): $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

(ii): $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Show Answer

Answer :

$U=\{1,2,3,4,5,6,7,8,9\}$

$A=\{2,4,6,8\}, B=\{2,3,5,7\}$

(i): $ \ (A \cup B)^{\prime}=\{2,3,4,5,6,7,8\}^{\prime}=\{1,9\} $

$\qquad A^{\prime} \cap B^{\prime}=\{1,3,5,7,9\} \cap(1,4,6,8,9)=\{1,9\}$

$\therefore \ \ (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

(ii): $ \ (A \cap B)^{\prime}=\{2\}^{\prime}=\{1,3,4,5,6,7,8,9\} $

$\qquad A^{\prime} \cup B^{\prime}=\{1,3,5,7,9\} \cup\{1,4,6,8,9\}=\{1,3,4,5,6,7,8,9\} $

$ \therefore \ \ (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

5. Draw appropriate Venn diagram for each of the following :

(i): $(A \cup B)^{\prime}$,

(ii): $A^{\prime} \cap B^{\prime}$,

(iii): $(A \cap B)^{\prime}$,

(iv): $A^{\prime} \cup B^{\prime}$

Show Answer

Answer :

(ii): $A^{\prime} \cap B^{\prime}$

(iii): $(A \cap B)^{\prime}$

(iv): $A^{\prime} \cup B^{\prime}$

6. Let $U$ be the set of all triangles in a plane. If $A$ is the set of all triangles with at least one angle different from $60^{\circ}$, what is $A^{\prime}$ ?

Show Answer

Answer :

$\mathrm{U}=$ Set of all triangles in a plane

$A=$ Set of all triangles with at-least one angle different from $60^{\circ}$

$\mathrm{A}^{\prime}=$ Set of all triangles with no angle different from $60^{\circ}$ $=$ Set of all triangles with all three angles $60^{\circ}$

(As, in an equilateral triangle, all angles are $60^{\circ}$ ) $=$ Set of all equilateral triangles

7. Fill in the blanks to make each of the following a true statement :

(i): $A \cup A^{\prime}=\ldots$

(ii): $\phi^{\prime} \cap A=\ldots$

(iii): $A \cap A^{\prime}=$

(iv): $U^{\prime} \cap A=\ldots$

Show Answer

Answer :

(i): $A \cup A^{\prime}=U$

(ii): $\Phi^{\prime } \cap A=U \cap A=A$

$\therefore \ \ \Phi^{\prime }\cap A=A$

(iii): $A \cap A^\prime=\Phi$

(iv): $ U^\prime \cap A=\Phi$

$\therefore \ \ U^\prime \cap A=\Phi$



Table of Contents