Chapter 1 Sets Miscellaneous Exercise
Miscellaneous Exercise on Chapter 1
1. Decide, among the following sets, which sets are subsets of one and another:
$A=\{x: x \in \mathbf{R}$ and $x$ satisfy $x^{2}-8 x+12=0\}$,
$B=\{2,4,6\}, \quad C=\{2,4,6,8, \ldots\}, D=\{6\}$
Show Answer
Answer :
$A=\{x: x \in R $ and $x$ satisfies $.x^{2}-8 x+12=0\}$
$2$ and $6$ are the only solutions of $x^{2}-8 x+12=0$
$\therefore \ \ A=\{2,6\}$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$
$\therefore \ \ D \subset A \subset B \subset C$
Hence, $A \subset B, A \subset C, B \subset C, D \subset A, D \subset B, D \subset C$
2. In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
(i) If $x \in A$ and $A \in B$, then $x \in B$
(ii) If $A \subset B$ and $B \in C$, then $A \in C$
(iii) If $A \subset B$ and $B \subset C$, then $A \subset C$
(iv) If $A \not \subset B$ and $B \not \subset C$, then $A \not \subset C$
(v) If $x \in A$ and $A \not \subset B$, then $x \in B$
(vi) If $A \subset B$ and $x \notin B$, then $x \notin A$
Show Answer
Answer :
(i) False
Let $A=\{1,2\}$ and $B=\{1,\{1,2\},\{3\}\}$
Now, $2 \in\{1,2\}$ and $\{1,2\} \in\{\{3\}, 1,\{1,2\}\}$
$A$ $\in$ $B$
However, $2 \notin\{\{3\}, 1,\{1,2\}\}$
(ii) False
Let $A=\{2\}, B=\{0,2\}$, and $C=\{1,\{0,2\}, 3\}$
As $A \subset B$
$B \in C$
However, $A \notin C$
(iii) True
Let $A \subset B$ and $B \subset C$.
Let $x \in A$
$\Rightarrow x \in B \quad[\because A \subset B]$
$\Rightarrow x \in C \quad[\because B \subset C]$
$\therefore \ \ A\subset C$
(iv) False
$ A=\{1,2\}, B=\{0,6,8\}, \text{ and } C=\{0,1,2,6,9\} $
Let Accordingly, $A \not \subset B$ and $B \not \subset C$.
However, $A \subset C$
(v) False
Let $A=\{3,5,7\}$ and $B=\{3,4,6\}$
Now, $ 5 \in A \text{ and } A \in B$
However, $5 \notin B$
(vi) True
Let $A \subset B$ and $x \notin B$.
To show: $x \notin A$
If possible, suppose $x \notin A$.
Then, $x \in B$, which is a contradiction as $x \notin B$
$\therefore \ \ x \notin A$
3. Let $A, B$, and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Show that $B=C$.
Show Answer
Answer :
Let, $A, B$ and $C$ be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$
To show: $B=C$
Let $x \in B$
$ \begin{matrix} \Rightarrow x \in A \cup B & {[B \subset A \cup B]} \\ \\ \Rightarrow x \in A \cup C & {[A \cup B=A \cup C]} \\ \\ \Rightarrow x \in A \text{ or } x \in C & \end{matrix} $
Case:1
$\qquad x\in A ~ $ Also, $ ~ x \in B$
$ \begin{aligned} & \therefore \ \ x \in A \cap B \\ \\ & \Rightarrow x \in A \cap C \quad[\because A \cap B=A \cap C] \end{aligned} $
$\therefore \ \ x \in A$ and $x \in C$
$ \qquad x \in C$
$\therefore \ \ B \in C $
Similarly, we can show that $ C \in B $
$\therefore \ \ B=C$
4. Show that the following four conditions are equivalent:
(i): $ \ A \subset B$
(ii): $ \ A-B=\phi$
(iii): $ \ A \cup B=B$
(iv): $A \cap B=A$
Show Answer
Answer :
First, we have to show that $(i) \Leftrightarrow (ii).$
$(i) \Rightarrow (ii).$
Let $\mathrm{A} \subset \mathrm{B}$
To show: $\mathrm{A}-\mathrm{B}=\phi$
If possible, suppose $A-B \neq \phi$
This means that there exists $\mathrm{x} \in \mathrm{A}, \mathrm{x} \notin \mathrm{B}$, which is not possible as $\mathrm{A} \subset \mathrm{B}$.
$ \begin{aligned} & \therefore \ \ \mathrm{A}-\mathrm{B}=\phi \\ \\ & \therefore \ \ \mathrm{A} \subset \mathrm{ ~ B} \Rightarrow \mathrm{ ~ A}-\mathrm{B}=\phi \end{aligned} $
$(ii) \Rightarrow (i).$
Let $\mathrm{A}-\mathrm{B}=\phi$
To show: $\mathrm{A} \subset \mathrm{B}$
Let $x \in A$
Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \phi$
$\therefore \ \ \mathrm{A}-\mathrm{B}=\phi \Rightarrow \mathrm{A} \subset \mathrm{B}$
Hence, $(ii) \Leftrightarrow (i)$
$(i) \Rightarrow (iii).$
Let $\mathrm{A} \subset \mathrm{B}$
To show: $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
Clearly, $B \subset A \cup B$
Let $x \in A \cup B$
$\Rightarrow \mathrm{x} \in \mathrm{A}$ or $\mathrm{x} \in \mathrm{B}$
Case I:
$ x \in A $
$ \begin{aligned} & \Rightarrow \mathrm{x} \in \mathrm{ ~ B} \quad[\because \mathrm{ ~ A} \subset \mathrm{ ~ B}] \\ \\ & \therefore \ \ \mathrm{A} \cup \mathrm{ ~ B} \subset \mathrm{ ~ B} \end{aligned} $
Case II:
$\mathrm{x} \in \mathrm{B}$
Then $A \cup B \subset B$
So, $A \cup B=B$
$(iii) \Rightarrow (i).$
Conversely, let $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
To show: $\mathrm{A} \subset \mathrm{B}$
Let $xe \ A$
$ \begin{aligned} & \Rightarrow x \in A \cup B[\because A \subset A \cup B] \\ \\ & \Rightarrow x \in B \quad [\because A \cup B=B] \\ \\ & \therefore \ \ A \subset B \end{aligned} $
Hence, $(iii) \Leftrightarrow (i)$
Now, we have to show that $(i) \Leftrightarrow (iv).$
Let $\mathrm{A} \subset \mathrm{B}$
Clearly $\mathrm{A} \cap \mathrm{B} \subset \mathrm{A}$
Let $x \in A$
We have to show that $x \in A \cap B$
As $A \subset B, x \in B$
$ \begin{aligned} & \therefore \ \ \mathrm{x} \in \mathrm{ ~ A} \cap \mathrm{ ~ B} \\ \\ & \therefore \ \ \mathrm{ ~ A} \subset \mathrm{ ~ A} \cap \mathrm{ ~ B} \end{aligned} $
Hence, $\mathrm{A}=\mathrm{A} \cap \mathrm{B}$
Conversely, suppose $A \cap B=A$
Let $x \in A$
$ \begin{aligned} & \Rightarrow x \in A \cap B \\ \\ & \Rightarrow x \in A \text { and } x \in B \\ \\ & \Rightarrow x \in B \\ \\ & \therefore \ \ A \subset B \end{aligned} $
Hence, $(i) \Leftrightarrow (iv).$
5. Show that if $A \subset B$, then $(C-B) \subset (C-A)$.
Show Answer
Answer :
Let $A \subset B$
To show: $(C - B) \subset (C - A)$
Let $x \in (C-B)$
$\Rightarrow x \in C$ and $x \notin B $
$\Rightarrow x \in C$ and $x \notin A[A$ $\subset B]$
$\Rightarrow x \in C-A$
$\therefore \ \ (C-B )\subset (C-A)$
6. Show that for any sets $A$ and $B$,
$A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B)$
Show Answer
Answer :
To show:
$ \begin{aligned} (A \cap B) \cup(A-B) & =(A \cap B) \cup\left(A \cap B^{\prime}\right) \\ \\ & =A \cap\left(B \cup B^{\prime}\right) \quad\text { (By distributive law) } \\ \\ & =A \cap U=A \end{aligned} $
Hence, $ \ A=(A \cap B) \cup(A-B)$
Also,
$ \begin{aligned} A \cup(B-A)& =A \cup\left(B \cap A^{\prime}\right) \\ \\ & =(A \cup B) \cap\left(A \cup A^{\prime}\right) \text { (By distributive law) } \\ \\ & =(A \cup B) \cap U \\ \\ & =A \cup B \end{aligned} $
Hence, $ \ A \cup(B-A)=A \cup B$.
7. Using properties of sets, show that
(i) $A \cup(A \cap B)=A$
(ii) $A \cap(A \cup B)=A$.
Show Answer
Answer :
(i) From the distributive property:
$ \begin{aligned} & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\ \\ & A \cup(A \cap B)=(A \cup A) \cap(A \cup B)=A \cap(A \cup B)=A \end{aligned} $
Hence,
$ A \cup(A \cap B)=A $
(ii) From the distributive property:
$ \begin{aligned} & A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\ \\ & A \cap(A \cup B)=(A \cap A) \cup(A \cap B)=A \cup(A \cap B) \end{aligned} $
From part $(i),$
$ A \cup(A \cap B)=A $
Hence,
$ A \cap(A \cup B)=A $
8. Show that $A \cap B=A \cap C$ need not imply $B=C$.
Show Answer
Answer :
$ \begin{aligned} & \text { Let } \mathrm{A}=\{0,1\} \\ \\ & \mathrm{B}=\{\mathrm{0}, 2,3\} \\ \\ & \mathrm{C}=\{0,4,5\} \end{aligned} $
So,
$A \cap B=\{0\} \ \ $ and $ \ \ \mathrm{A} \cap \mathrm{C}=\{\mathrm{0}\}$
Here, $\mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}=\{\mathrm{0}\}$
However, $\mathrm{B} \neq \mathrm{C}$ as $2 \in \mathrm{B}$ and $2 \notin \mathrm{C}$
9. Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X$, show that $A=B$.
(Hints $A=A \cap(A \cup X), B=B \cap(B \cup X)$ and use Distributive law )
Show Answer
Answer :
Let $\mathrm{A}$ and $\mathrm{B}$ be two sets such that
$\mathrm{A} \cap \mathrm{X}=\mathrm{B} \cap \mathrm{X}=\phi$ and $\mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}$ for some set $\mathrm{X}$.
To show: $\mathrm{A}=\mathrm{B}$
It can be seen that
$ \begin{aligned} A & =A \cap(A \cup X) \\ \\ & =A \cap(B \cup X)(A \cup X=B \cup X) \\ \\ & =(A \cap B) \cup(A \cap X) \quad \text { (Distributive law )} \\ \\ & =(A \cap B) \cup \phi \quad(\because A \cap X=\phi) \\ \\ & =A \cap B \qquad . . .(1) \end{aligned} $
Now,
$ \begin{aligned} \mathrm{B} & =\mathrm{B} \cap(\mathrm{B} \cup \mathrm{X}) \\ \\ & =\mathrm{B} \cap(\mathrm{A} \cup \mathrm{X})\qquad(\because \mathrm{A} \cup \mathrm{X}=\mathrm{B} \cup \mathrm{X}) \\ \\ & =(\mathrm{B} \cap \mathrm{A}) \cup(\mathrm{B} \cap \mathrm{X}) \qquad \text { (Distributive law) } \\ \\ & =(\mathrm{B} \cap \mathrm{A}) \cup \phi\qquad (\because \mathrm{B} \cap \mathrm{X}=\phi) \\ \\ & =\mathrm{B} \cap \mathrm{A} \\ \\ & =\mathrm{A} \cap \mathrm{B} \qquad . . .(2) \end{aligned} $
Hence, from $(1)$ and $(2),$ we get, $ \ \mathrm{A}=\mathrm{B} $
10. Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\phi$.
Show Answer
Answer :
Let $A=\{0,1\}, B=\{1,2\}$, and $C=\{2, 0\}$
Accordingly,
$A \cap B=\{1\}$
$B \cap C=\{2\}$
$A \cap C=\{0\}$
$\therefore \ \ \mathrm{A} \cap \mathrm{B}, \mathrm{B} \cap \mathrm{C}$, and $\mathrm{A} \cap \mathrm{C}$ are non-empty.
However, $ \ \mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=\phi$