Chapter 13 Statistics EXERCISE 13.1

EXERCISE 13.1

Find the mean deviation about the mean for the data in Exercises $1$ and $2.$

$1:\quad$ $4,7,8,9,10,12,13,17$

Show Answer

Answer :

The given data is $4,7,8,9,10,12,13,17$

Mean of the data,

$ \bar{{}x}=\dfrac{4+7+8+9+10+12+13+17}{8}=\dfrac{80}{8}=10 $

The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are $-6, - 3, -2, -1, 0, 2, 3, 7$

The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are $6,3,2,1,0,2,3,7$

The required mean deviation about the mean is M.D. $\left(\bar{{}x}\right)=\dfrac{\sum _{i=1}^{8}|x_i-\bar{{}x}|}{8}=\dfrac{6+3+2+1+0+2+3+7}{8}=\dfrac{24}{8}=3$

$2:\quad$ $38,70,48,40,42,55,63,46,54,44$

Show Answer

Answer :

The given data is $38,70,48,40,42,55,63,46,54,44$

Mean of the given data, $\bar{{}x}=\dfrac{38+70+48+40+42+55+63+46+54+44}{10}=\dfrac{500}{10}=50$

The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are $-12, 20, -2, -10, -8, 5, 13, -4, 4, -6$

The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are $12,20,2,10,8,5,13,4,4,6$

The required mean deviation about the mean is

$ \begin{aligned} \text{ M.D. }\left(\bar{{}x}\right) & =\dfrac{\sum _{i=1}^{10}|x_i-\bar{{}x}|}{10} \\ \\ & =\dfrac{12+20+2+10+8+5+13+4+4+6}{10} \\ \\ & =\dfrac{84}{10} \\ \\ & =8.4 \end{aligned} $

Find the mean deviation about the median for the data in Exercises $3$ and $4.$

$3:\quad$ $13,17,16,14,11,13,10,16,11,18,12,17$

Show Answer

Answer :

The given data is $13,17,16,14,11,13,10,16,11,18,12,17$

Here, the numbers of observations are $12 ,$ which is even.

Arranging the data in ascending order, we obtain $10,11,11,12,13,13,14,16,16,17,17,18$

Median, $M=\dfrac{\left(\dfrac{12}{2}\right)^{t h} \text{ observation }+\left(\dfrac{12}{2}+1\right)^{th} \text{ observation }}{2}$

$ \qquad\qquad \ =\dfrac{6^{\text{th }} \text{ observation }+7^{\text{th }} \text{ observation }}{2}$

$\qquad\qquad \ =\dfrac{13+14}{2}=\dfrac{27}{2}=13.5$

The deviations of the respective observations from the median, i.e. ${x_i-M}$, are $-3.5, -2.5, -2.5, -1.5, -0.5, -0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5$

The absolute values of the deviations, $|x_i-M|$, are $3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$

The required mean deviation about the median is

$ \begin{aligned} \text{ M.D. }\left(M\right) & =\dfrac{\sum _{i=1}^{12}|x_i-M|}{12} \\ \\ & =\dfrac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\ \\ & =\dfrac{28}{12}=2.33 \end{aligned} $

$4:\quad$ $36,72,46,42,60,45,53,46,51,49$

Show Answer

Answer :

The given data is $36,72,46,42,60,45,53,46,51,49$

Here, the number of observations is $10 ,$ which is even.

Arranging the data in ascending order, we obtain $36,42,45,46,46,49,51,53,60,72$

$ \begin{aligned} \text{ Median } M & =\dfrac{\left(\dfrac{10}{2}\right)^{t h} \text{ observation }+\left(\dfrac{10}{2}+1\right)^{th} \text{ observation }}{2} \\ \\ & =\dfrac{5^{\text{th }} \text{ observation }+6^{\text{th }} \text{ observation }}{2} \\ \\ & =\dfrac{46+49}{2}=\dfrac{95}{2}=47.5 \end{aligned} $

The deviations of the respective observations from the median, i.e. $x_i-M$, are $-11.5, -5.5, -2.5, -1.5, -1.5, 1.5, 3.5, 5.5, 12.5, 24.5$

The absolute values of the deviations, $|x_i-M|$, are $11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$

Thus, the required mean deviation about the median is

$ \begin{aligned} \text{ M.D. }\left(M\right) & =\dfrac{\sum _{i=1}^{10}|x_i-M|}{10}=\dfrac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\ \\ & =\dfrac{70}{10}=7 \end{aligned} $

$5:\quad$ Find the mean deviation about the mean for the data in Exercises $5$ and $6.$

$\begin{array}{lllll} x_i & {5} & 10 & 15 & 20 & 25 \\ \\ f_i & {7} & 4 & 6 & 3 & 5 \end{array}$

Show Answer

Answer :

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f}_i \boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\mid \mathbf{x} _i-\overline{\mathbf{x}}\mid $ $\mathbf{f} _{\mathbf{i}}\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $
5 7 35 9 63
10 4 40 4 16
15 6 90 1 6
20 3 60 6 18
25 5 125 11 55
25 350 158

$N=\sum _{i=1}^{5} f_i=25$

$\sum _{i=1}^{5} f_i x_i=350$

$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{25} \times 350=14$

$\therefore \ \ \ MD\left(\overline{x}\right)=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{25} \times 158=6.32$

$6:\quad$

$\begin{array}{lllll} x_i & {10} & 30 & 50 & 70 & 90 \\ \\ f_i & {4} & 24 & 28 & 16 & 8 \end{array}$

Show Answer

Answer :

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ $\mathbf{f} _{\mathbf{i}}\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $
10 4 40 40 160
30 24 720 20 480
50 28 1400 0 0
70 16 1120 20 320
90 8 720 40 320
80 4000 1280

$N=\sum _{i=1}^{5} f_i=80, \sum _{i=1}^{5} f_i x_i=4000$

$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{80} \times 4000=50$

$MD\left(\overline{x}\right) =\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{80} \times 1280=16$

$7:\quad$ Find the mean deviation about the median for the data in Exercises $7$ and $8.$

$\begin{array}{llllll} x_i & {5}& 7 & 9 & 10 & 12 & 15 \\ \\ f_i & {8} & 6 & 2 & 2 & 2 & 6 \end{array}$

Show Answer

Answer :

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{{}x}_i$ $\boldsymbol{{}f}_i$ $\boldsymbol{{}c}$
5 8 8
7 6 14
9 2 16
10 2 18
12 2 20
15 6 26

Here, $N=26$, which is even.

Median is the mean of $13^{\text{th }}$ and $14^{\text{th }}$ observations. Both of these observations lie in the cumulative frequency $14 ,$ for which the corresponding observation is $7 .$

$\therefore \ \ \ $ Median $=\dfrac{13^{\text{is }} \text{ observation }+14^{\text{th }} \text{ observation }}{2}=\dfrac{7+7}{2}=7$

The absolute values of the deviations from median, i.e. $|x_i-M|$, are

$\mid \boldsymbol{{}x} _{\boldsymbol{{}i}}- \boldsymbol{{}M}\mid $ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}\mid \boldsymbol{{}x} _{\boldsymbol{{}i}} -\mathbf{M}\mid $
2 8 16
0 6 0
2 2 4
3 2 6
5 2 10
8 6 48

$ \begin{aligned} & \sum _{i=1}^{6} f_i=26 \quad \sum _{i=1}^{6} f_i|x_i-M|=84 \\ \\ & \text{ M.D.(M) }=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-M|=\dfrac{1}{26} \times 84=3.23 \end{aligned} $

$8:\quad$

$\begin{array}{lllll} x_i & {15}& 21 & 27 & 50 & 35 \\ \\ f_i & {3} & 5 & 6 & 7 & 8 \end{array}$

Show Answer

Answer :

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ $\boldsymbol{{}c}$
15 3 3
21 5 8
27 6 14
30 7 21
35 8 29

Here, $N=29$, which is odd.

$\therefore \ \ \ $ Median $=\left(\dfrac{29+1}{2}\right) {\text{observation }=15^{\text{th }} \text{ observation }}^{\text{th }}$

This observation lies in the cumulative frequency $21 ,$ for which the corresponding observation is $30 .$

$\therefore \ \ \ $ Median $=30$

The absolute values of the deviations from median, i.e. $|x_i-M|$, are

$\mid x_i - \mathbf{M}\mid $ $\boldsymbol{{}f}_i$ $f_i\mid x_i - \mathbf{M}\mid $
15 3 45
9 5 45
3 6 18
0 7 0
5 8 40

$ \begin{aligned} & \sum _{i=1}^{5} f_i=29, \\ \\ & \sum _{i=1}^{5} f_i|x_i-M|=148 \\ \\ & \quad \text{ M.D. }\left(M\right)=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-M|=\dfrac{1}{29} \times 148=5.1 \end{aligned} $

$9:\quad$ Find the mean deviation about the mean for the data in Exercises $9$ and $10.$

Income per
day in ₹
Number
of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3
Show Answer

Answer :

The following table is formed.

Income per day Number of persons $f_i$ Mid-point $X_i$ $f_i x_i$ $\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ $\mathbf{f} _i \mid \mathbf{x} _i-\overline{\mathbf{x}}$
$0 - 100$ 4 50 200 308 1232
100 - 200 8 150 1200 208 1664
200- 300 9 250 2250 108 972
300 - 400 10 350 3500 8 80
400 - 500 7 450 3150 92 644
500 - 600 5 550 2750 192 960
600 - 700 4 650 2600 292 1168
700 - 800 3 750 2250 392 1176
50 17900 7896

Here, $\quad N=\sum _{i=1}^{8} f_i=50, \sum _{i=1}^{8} f_i x_i=17900$

$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{8} f_i x_i=\dfrac{1}{50} \times 17900=358$

$\text{M.D.} \left(\overline{x}\right)=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-\overline{x}|=\dfrac{1}{50} \times 7896=157.92$

$10:\quad$ Find the mean deviation about the mean for the data:

Height in cms 95-105 105-115 115-120 125 -135 135-145 145-155
Number of boys 9 13 26 30 12 10
Show Answer

Answer :

The following table is formed.

Height in cms Number of boys $\boldsymbol{{}f}_i$ Mid-point $\boldsymbol{{}x}_i$ $\boldsymbol{{}f}_i \boldsymbol{{}x}_i$ $\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ $\mathbf{f} _{\mathbf{i}}\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $
$95-105$ 9 100 900 25.3 227.7
$105-115$ 13 110 1430 15.3 198.9
$115-125$ 26 120 3120 5.3 137.8
$125-135$ 30 130 3900 4.7 141
$135-145$ 12 140 1680 14.7 176.4
$145-155$ 10 150 1500 24.7 247

Here, $\quad N=\sum _{i=1}^{6} f_i=100, \sum _{i=1}^{6} f_i x_i=12530$

$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{6} f_i x_i=\dfrac{1}{100} \times 12530=125.3$

$\text{M.D.}\left(\overline{x}\right)=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-\overline{x}|=\dfrac{1}{100} \times 1128.8=11.28$

$11:\quad$ Find the mean deviation about median for the following data :

Marks $0-10$ $10-20$ $20-30$ $30-40$ $40-50$ $50-60$
Number of
Girls
6 8 14 16 4 2
Show Answer

Answer :

$ \dfrac{\mathrm{N}}{2}=\dfrac{5 \mathrm{0}}{2}=25 $

$\therefore \ \ \ $ Median class is $20-30 $

$\therefore \ \ \ $ Median $=20+\dfrac{25-14}{14} \times 10=20+7.86=27.86$

$\text{M.D.}$ about median $=\dfrac{1}{N} \sum _{i=1}^n f i\left|x_i-M\right|=\dfrac{1}{50} \times 517.16=10.34$

$12:\quad$ Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age
(in years)
$16-20$ $21-25$ $26-30$ $31-35$ $36-40$ $41-45$ $46-50$ $51-55$
Number 5 6 12 14 26 12 16 9

[Hint: Convert the given data into continuous frequency distribution by subtracting $0.5$ from the lower limit and adding $0.5$ to the upper limit of each class interval]

Show Answer

Answer :

The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting $0.5$ from the lower limit and adding $0.5$ to the upper limit of each class interval.

The table is formed as follows.

Age Number $\boldsymbol{{}f}_i$ Cumulative frequency (c.f.) Mid-point $\boldsymbol{{}x}_i$ $\mid \boldsymbol{{}x}_i $ Med. $\mid$ $\boldsymbol{{}f} _{\boldsymbol{{}i}} \mid \boldsymbol{{}x} _{\boldsymbol{{}i}} -$ Med. $\mid$
$15.5-20.5$ 5 5 18 20 100
$20.5-25.5$ 6 11 23 15 90
$25.5-30.5$ 12 23 28 10 120
$30.5-35.5$ 14 37 33 5 70
$35.5-40.5$ 26 63 38 0 0
$40.5-45.5$ 12 75 43 5 60
$45.5-50.5$ 16 91 48 10 160
$50.5-55.5$ 9 100 53 15 735
100

The class interval containing the $\dfrac{N^{t h}}{2}$ or $50^{\text{th }}$ item is $35.5 - 40.5$.

Therefore, $35.5 - 40.5$ is the median class.

It is known that,

Median $=L+\dfrac{\dfrac{N}{2}-C}{f} \times h$

Here, $L=35.5, C=37, f=26, h=5$, and $N=100$

$\therefore \ \ \ $ Median $=35.5+\dfrac{50-37}{26} \times 5=35.5+\dfrac{13 \times 5}{26}=35.5+2.5=38$

Thus, mean deviation about the median is given by,

$\text{M.D.(M)}$ $=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-M|=\dfrac{1}{100} \times 735=7.35$



Table of Contents