Chapter 13 Statistics EXERCISE 13.1
EXERCISE 13.1
Find the mean deviation about the mean for the data in Exercises $1$ and $2.$
$1:\quad$ $4,7,8,9,10,12,13,17$
Show Answer
Answer :
The given data is $4,7,8,9,10,12,13,17$
Mean of the data,
$ \bar{{}x}=\dfrac{4+7+8+9+10+12+13+17}{8}=\dfrac{80}{8}=10 $
The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are $-6, - 3, -2, -1, 0, 2, 3, 7$
The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are $6,3,2,1,0,2,3,7$
The required mean deviation about the mean is M.D. $\left(\bar{{}x}\right)=\dfrac{\sum _{i=1}^{8}|x_i-\bar{{}x}|}{8}=\dfrac{6+3+2+1+0+2+3+7}{8}=\dfrac{24}{8}=3$
$2:\quad$ $38,70,48,40,42,55,63,46,54,44$
Show Answer
Answer :
The given data is $38,70,48,40,42,55,63,46,54,44$
Mean of the given data, $\bar{{}x}=\dfrac{38+70+48+40+42+55+63+46+54+44}{10}=\dfrac{500}{10}=50$
The deviations of the respective observations from the mean $\bar{{}x}$, i.e. $x_i-\bar{{}x}$, are $-12, 20, -2, -10, -8, 5, 13, -4, 4, -6$
The absolute values of the deviations, i.e. $|x_i-\bar{{}x}|$, are $12,20,2,10,8,5,13,4,4,6$
The required mean deviation about the mean is
$ \begin{aligned} \text{ M.D. }\left(\bar{{}x}\right) & =\dfrac{\sum _{i=1}^{10}|x_i-\bar{{}x}|}{10} \\ \\ & =\dfrac{12+20+2+10+8+5+13+4+4+6}{10} \\ \\ & =\dfrac{84}{10} \\ \\ & =8.4 \end{aligned} $
Find the mean deviation about the median for the data in Exercises $3$ and $4.$
$3:\quad$ $13,17,16,14,11,13,10,16,11,18,12,17$
Show Answer
Answer :
The given data is $13,17,16,14,11,13,10,16,11,18,12,17$
Here, the numbers of observations are $12 ,$ which is even.
Arranging the data in ascending order, we obtain $10,11,11,12,13,13,14,16,16,17,17,18$
Median, $M=\dfrac{\left(\dfrac{12}{2}\right)^{t h} \text{ observation }+\left(\dfrac{12}{2}+1\right)^{th} \text{ observation }}{2}$
$ \qquad\qquad \ =\dfrac{6^{\text{th }} \text{ observation }+7^{\text{th }} \text{ observation }}{2}$
$\qquad\qquad \ =\dfrac{13+14}{2}=\dfrac{27}{2}=13.5$
The deviations of the respective observations from the median, i.e. ${x_i-M}$, are $-3.5, -2.5, -2.5, -1.5, -0.5, -0.5, 0.5, 2.5, 2.5, 3.5, 3.5, 4.5$
The absolute values of the deviations, $|x_i-M|$, are $3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The required mean deviation about the median is
$ \begin{aligned} \text{ M.D. }\left(M\right) & =\dfrac{\sum _{i=1}^{12}|x_i-M|}{12} \\ \\ & =\dfrac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12} \\ \\ & =\dfrac{28}{12}=2.33 \end{aligned} $
$4:\quad$ $36,72,46,42,60,45,53,46,51,49$
Show Answer
Answer :
The given data is $36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is $10 ,$ which is even.
Arranging the data in ascending order, we obtain $36,42,45,46,46,49,51,53,60,72$
$ \begin{aligned} \text{ Median } M & =\dfrac{\left(\dfrac{10}{2}\right)^{t h} \text{ observation }+\left(\dfrac{10}{2}+1\right)^{th} \text{ observation }}{2} \\ \\ & =\dfrac{5^{\text{th }} \text{ observation }+6^{\text{th }} \text{ observation }}{2} \\ \\ & =\dfrac{46+49}{2}=\dfrac{95}{2}=47.5 \end{aligned} $
The deviations of the respective observations from the median, i.e. $x_i-M$, are $-11.5, -5.5, -2.5, -1.5, -1.5, 1.5, 3.5, 5.5, 12.5, 24.5$
The absolute values of the deviations, $|x_i-M|$, are $11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$
Thus, the required mean deviation about the median is
$ \begin{aligned} \text{ M.D. }\left(M\right) & =\dfrac{\sum _{i=1}^{10}|x_i-M|}{10}=\dfrac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10} \\ \\ & =\dfrac{70}{10}=7 \end{aligned} $
$5:\quad$ Find the mean deviation about the mean for the data in Exercises $5$ and $6.$
$\begin{array}{lllll} x_i & {5} & 10 & 15 & 20 & 25 \\ \\ f_i & {7} & 4 & 6 & 3 & 5 \end{array}$
Show Answer
Answer :
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f}_i \boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\mid \mathbf{x} _i-\overline{\mathbf{x}}\mid $ | $\mathbf{f} _{\mathbf{i}}\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ |
---|---|---|---|---|
5 | 7 | 35 | 9 | 63 |
10 | 4 | 40 | 4 | 16 |
15 | 6 | 90 | 1 | 6 |
20 | 3 | 60 | 6 | 18 |
25 | 5 | 125 | 11 | 55 |
25 | 350 | 158 | ||
$N=\sum _{i=1}^{5} f_i=25$
$\sum _{i=1}^{5} f_i x_i=350$
$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{25} \times 350=14$
$\therefore \ \ \ MD\left(\overline{x}\right)=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{25} \times 158=6.32$
$6:\quad$
$\begin{array}{lllll} x_i & {10} & 30 & 50 & 70 & 90 \\ \\ f_i & {4} & 24 & 28 & 16 & 8 \end{array}$
Show Answer
Answer :
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}} \boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ | $\mathbf{f} _{\mathbf{i}}\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ |
---|---|---|---|---|
10 | 4 | 40 | 40 | 160 |
30 | 24 | 720 | 20 | 480 |
50 | 28 | 1400 | 0 | 0 |
70 | 16 | 1120 | 20 | 320 |
90 | 8 | 720 | 40 | 320 |
80 | 4000 | 1280 |
$N=\sum _{i=1}^{5} f_i=80, \sum _{i=1}^{5} f_i x_i=4000$
$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{5} f_i x_i=\dfrac{1}{80} \times 4000=50$
$MD\left(\overline{x}\right) =\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-\overline{x}|=\dfrac{1}{80} \times 1280=16$
$7:\quad$ Find the mean deviation about the median for the data in Exercises $7$ and $8.$
$\begin{array}{llllll} x_i & {5}& 7 & 9 & 10 & 12 & 15 \\ \\ f_i & {8} & 6 & 2 & 2 & 2 & 6 \end{array}$
Show Answer
Answer :
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.
$\boldsymbol{{}x}_i$ | $\boldsymbol{{}f}_i$ | $\boldsymbol{{}c}$ |
---|---|---|
5 | 8 | 8 |
7 | 6 | 14 |
9 | 2 | 16 |
10 | 2 | 18 |
12 | 2 | 20 |
15 | 6 | 26 |
Here, $N=26$, which is even.
Median is the mean of $13^{\text{th }}$ and $14^{\text{th }}$ observations. Both of these observations lie in the cumulative frequency $14 ,$ for which the corresponding observation is $7 .$
$\therefore \ \ \ $ Median $=\dfrac{13^{\text{is }} \text{ observation }+14^{\text{th }} \text{ observation }}{2}=\dfrac{7+7}{2}=7$
The absolute values of the deviations from median, i.e. $|x_i-M|$, are
$\mid \boldsymbol{{}x} _{\boldsymbol{{}i}}- \boldsymbol{{}M}\mid $ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}\mid \boldsymbol{{}x} _{\boldsymbol{{}i}} -\mathbf{M}\mid $ |
---|---|---|
2 | 8 | 16 |
0 | 6 | 0 |
2 | 2 | 4 |
3 | 2 | 6 |
5 | 2 | 10 |
8 | 6 | 48 |
$ \begin{aligned} & \sum _{i=1}^{6} f_i=26 \quad \sum _{i=1}^{6} f_i|x_i-M|=84 \\ \\ & \text{ M.D.(M) }=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-M|=\dfrac{1}{26} \times 84=3.23 \end{aligned} $
$8:\quad$
$\begin{array}{lllll} x_i & {15}& 21 & 27 & 50 & 35 \\ \\ f_i & {3} & 5 & 6 & 7 & 8 \end{array}$
Show Answer
Answer :
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.
$\boldsymbol{{}x} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}}$ | $\boldsymbol{{}c}$ |
---|---|---|
15 | 3 | 3 |
21 | 5 | 8 |
27 | 6 | 14 |
30 | 7 | 21 |
35 | 8 | 29 |
Here, $N=29$, which is odd.
$\therefore \ \ \ $ Median $=\left(\dfrac{29+1}{2}\right) {\text{observation }=15^{\text{th }} \text{ observation }}^{\text{th }}$
This observation lies in the cumulative frequency $21 ,$ for which the corresponding observation is $30 .$
$\therefore \ \ \ $ Median $=30$
The absolute values of the deviations from median, i.e. $|x_i-M|$, are
$\mid x_i - \mathbf{M}\mid $ | $\boldsymbol{{}f}_i$ | $f_i\mid x_i - \mathbf{M}\mid $ |
---|---|---|
15 | 3 | 45 |
9 | 5 | 45 |
3 | 6 | 18 |
0 | 7 | 0 |
5 | 8 | 40 |
$ \begin{aligned} & \sum _{i=1}^{5} f_i=29, \\ \\ & \sum _{i=1}^{5} f_i|x_i-M|=148 \\ \\ & \quad \text{ M.D. }\left(M\right)=\dfrac{1}{N} \sum _{i=1}^{5} f_i|x_i-M|=\dfrac{1}{29} \times 148=5.1 \end{aligned} $
$9:\quad$ Find the mean deviation about the mean for the data in Exercises $9$ and $10.$
Income per day in ₹ |
Number of persons |
---|---|
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Show Answer
Answer :
The following table is formed.
Income per day | Number of persons $f_i$ | Mid-point $X_i$ | $f_i x_i$ | $\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ | $\mathbf{f} _i \mid \mathbf{x} _i-\overline{\mathbf{x}}$ |
---|---|---|---|---|---|
$0 - 100$ | 4 | 50 | 200 | 308 | 1232 |
100 - 200 | 8 | 150 | 1200 | 208 | 1664 |
200- 300 | 9 | 250 | 2250 | 108 | 972 |
300 - 400 | 10 | 350 | 3500 | 8 | 80 |
400 - 500 | 7 | 450 | 3150 | 92 | 644 |
500 - 600 | 5 | 550 | 2750 | 192 | 960 |
600 - 700 | 4 | 650 | 2600 | 292 | 1168 |
700 - 800 | 3 | 750 | 2250 | 392 | 1176 |
50 | 17900 | 7896 | |||
Here, $\quad N=\sum _{i=1}^{8} f_i=50, \sum _{i=1}^{8} f_i x_i=17900$
$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{8} f_i x_i=\dfrac{1}{50} \times 17900=358$
$\text{M.D.} \left(\overline{x}\right)=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-\overline{x}|=\dfrac{1}{50} \times 7896=157.92$
$10:\quad$ Find the mean deviation about the mean for the data:
Height in cms | 95-105 | 105-115 | 115-120 | 125 -135 | 135-145 | 145-155 | ||
---|---|---|---|---|---|---|---|---|
Number of boys | 9 | 13 | 26 | 30 | 12 | 10 |
Show Answer
Answer :
The following table is formed.
Height in cms | Number of boys $\boldsymbol{{}f}_i$ | Mid-point $\boldsymbol{{}x}_i$ | $\boldsymbol{{}f}_i \boldsymbol{{}x}_i$ | $\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ | $\mathbf{f} _{\mathbf{i}}\mid \mathbf{x} _{\mathbf{i}}-\overline{\mathbf{x}}\mid $ |
---|---|---|---|---|---|
$95-105$ | 9 | 100 | 900 | 25.3 | 227.7 |
$105-115$ | 13 | 110 | 1430 | 15.3 | 198.9 |
$115-125$ | 26 | 120 | 3120 | 5.3 | 137.8 |
$125-135$ | 30 | 130 | 3900 | 4.7 | 141 |
$135-145$ | 12 | 140 | 1680 | 14.7 | 176.4 |
$145-155$ | 10 | 150 | 1500 | 24.7 | 247 |
Here, $\quad N=\sum _{i=1}^{6} f_i=100, \sum _{i=1}^{6} f_i x_i=12530$
$\therefore \ \ \ \overline{x}=\dfrac{1}{N} \sum _{i=1}^{6} f_i x_i=\dfrac{1}{100} \times 12530=125.3$
$\text{M.D.}\left(\overline{x}\right)=\dfrac{1}{N} \sum _{i=1}^{6} f_i|x_i-\overline{x}|=\dfrac{1}{100} \times 1128.8=11.28$
$11:\quad$ Find the mean deviation about median for the following data :
Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
---|---|---|---|---|---|---|
Number of Girls |
6 | 8 | 14 | 16 | 4 | 2 |
Show Answer
Answer :

$ \dfrac{\mathrm{N}}{2}=\dfrac{5 \mathrm{0}}{2}=25 $
$\therefore \ \ \ $ Median class is $20-30 $
$\therefore \ \ \ $ Median $=20+\dfrac{25-14}{14} \times 10=20+7.86=27.86$
$\text{M.D.}$ about median $=\dfrac{1}{N} \sum _{i=1}^n f i\left|x_i-M\right|=\dfrac{1}{50} \times 517.16=10.34$
$12:\quad$ Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age (in years) |
$16-20$ | $21-25$ | $26-30$ | $31-35$ | $36-40$ | $41-45$ | $46-50$ | $51-55$ |
---|---|---|---|---|---|---|---|---|
Number | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
[Hint: Convert the given data into continuous frequency distribution by subtracting $0.5$ from the lower limit and adding $0.5$ to the upper limit of each class interval]
Show Answer
Answer :
The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting $0.5$ from the lower limit and adding $0.5$ to the upper limit of each class interval.
The table is formed as follows.
Age | Number $\boldsymbol{{}f}_i$ | Cumulative frequency (c.f.) | Mid-point $\boldsymbol{{}x}_i$ | $\mid \boldsymbol{{}x}_i $ Med. $\mid$ | $\boldsymbol{{}f} _{\boldsymbol{{}i}} \mid \boldsymbol{{}x} _{\boldsymbol{{}i}} -$ Med. $\mid$ |
---|---|---|---|---|---|
$15.5-20.5$ | 5 | 5 | 18 | 20 | 100 |
$20.5-25.5$ | 6 | 11 | 23 | 15 | 90 |
$25.5-30.5$ | 12 | 23 | 28 | 10 | 120 |
$30.5-35.5$ | 14 | 37 | 33 | 5 | 70 |
$35.5-40.5$ | 26 | 63 | 38 | 0 | 0 |
$40.5-45.5$ | 12 | 75 | 43 | 5 | 60 |
$45.5-50.5$ | 16 | 91 | 48 | 10 | 160 |
$50.5-55.5$ | 9 | 100 | 53 | 15 | 735 |
100 | |||||
The class interval containing the $\dfrac{N^{t h}}{2}$ or $50^{\text{th }}$ item is $35.5 - 40.5$.
Therefore, $35.5 - 40.5$ is the median class.
It is known that,
Median $=L+\dfrac{\dfrac{N}{2}-C}{f} \times h$
Here, $L=35.5, C=37, f=26, h=5$, and $N=100$
$\therefore \ \ \ $ Median $=35.5+\dfrac{50-37}{26} \times 5=35.5+\dfrac{13 \times 5}{26}=35.5+2.5=38$
Thus, mean deviation about the median is given by,
$\text{M.D.(M)}$ $=\dfrac{1}{N} \sum _{i=1}^{8} f_i|x_i-M|=\dfrac{1}{100} \times 735=7.35$