Chapter 13 Statistics EXERCISE 13.2
EXERCISE 13.2
Find the mean and variance for each of the data in Exercies $1$ to $5.$
1. $6,7,10,12,13,4,8,12$
Show Answer
Answer :
$6,7,10,12,13,4,8,12$
Mean, $\overline{x}=\dfrac{\sum _ {i=1}^{8} x_i}{n}=\dfrac{6+7+10+12+13+4+8+12}{8}=\dfrac{72}{8}=9$
The following table is obtained.
$X_i$ | $(x_i-\bar{{}x})$ | $(x_i-\overline{x})^{2}$ |
---|---|---|
6 | $- 3$ | 9 |
7 | $- 2$ | 4 |
10 | $- 1$ | 1 |
12 | 3 | 9 |
13 | 4 | 16 |
4 | -5 | 25 |
8 | $- 1$ | 1 |
12 | 3 | 9 |
74 | ||
Variance $(\sigma^{2})=\dfrac{1}{n} \sum _ {i=1}^{8}(x_i-\bar{{}x})^{2}=\dfrac{1}{8} \times 74=9.25$
2. First $n$ natural numbers
Show Answer
Answer :
The mean of first $n$ natural numbers is calculated as follows.
Mean $=\dfrac{\text{ Sum of all observations }}{\text{ Number of observations }}$
$\therefore \ \ $ Mean $=\dfrac{\dfrac{n(n+1)}{2}}{n}=\dfrac{n+1}{2}$
Variance $(\sigma^{2})=\dfrac{1}{n} \sum _ {i=1}^{n}(x_i-\bar{{}x})^{2}$
$\hspace{1.9cm}=\dfrac{1}{n} \sum _ {i=1}^{n}\left[x_i-(\dfrac{n+1}{2})\right]^{2}$
$\hspace{1.9cm}=\dfrac{1}{n} \sum _ {i=1}^{n} x_i{ }^{2}-\dfrac{1}{n} \sum _ {i=1}^{n} 2(\dfrac{n+1}{2}) x_i+\dfrac{1}{n} \sum _ {i=1}^{n}(\dfrac{n+1}{2})^{2}$
$\hspace{1.9cm}=\dfrac{1}{n} \dfrac{n(n+1)(2 n+1)}{6}-(\dfrac{n+1}{n})\left[\dfrac{n(n+1)}{2}\right]+\dfrac{(n+1)^{2}}{4 n} \times n$
$\hspace{1.9cm}=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{2}+\dfrac{(n+1)^{2}}{4}$
$\hspace{1.9cm}=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{4}$
$\hspace{1.9cm}=(n+1)\left[\dfrac{4 n+2-3 n-3}{12}\right]$
$\hspace{1.9cm}=\dfrac{(n+1)(n-1)}{12}$
$\hspace{1.9cm}=\dfrac{n^{2}-1}{12}$
3. First $10$ multiples of $3$
Show Answer
Answer :
The first $10$ multiples of $3$ are $3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar{{}x}=\dfrac{\sum _ {i=1}^{10} x_i}{10}=\dfrac{165}{10}=16.5$
The following table is obtained.
$x_i$ | $(x_i-\overline{x})$ | $(x_i-\overline{x})^{2}$ |
---|---|---|
3 | $- 13.5$ | 182.25 |
6 | $- 10.5$ | 110.25 |
9 | $- $ 7.5 | 56.25 |
12 | $- $ 4.5 | 20.25 |
15 | $- $ 1.5 | 2.25 |
18 | 1.5 | 2.25 |
21 | 4.5 | 20.25 |
24 | 7.5 | 56.25 |
27 | 10.5 | 110.25 |
30 | 13.5 | 182.25 |
742.5 | ||
Variance $(\sigma^{2})=\dfrac{1}{n} \sum _ {i=1}^{10}(x_i-\overline{x})^{2}=\dfrac{1}{10} \times 742.5=74.25$
4.
$x_i$ | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
---|---|---|---|---|---|---|---|
$f_i$ | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Show Answer
Answer :
The data is obtained in tabular form as follows.
$\boldsymbol{{}x} _ {\boldsymbol{{}i}}$ | $\boldsymbol{{}f} \boldsymbol{{}i}$ | $\boldsymbol{{}f} _ {\boldsymbol{{}i}} \boldsymbol{{}x} _ {\boldsymbol{{}i}}$ | $x_i-\overline{x}$ | $(x_i-\overline{x})^{2}$ | $f_i(x_i-\overline{x})^{2}$ |
---|---|---|---|---|---|
6 | 2 | 12 | $- 13$ | 169 | 338 |
10 | 4 | 40 | $- 9$ | 81 | 324 |
14 | 7 | 98 | $- $’ 5 | 25 | 175 |
18 | 12 | 216 | - 1 | 1 | 12 |
24 | 8 | 192 | 5 | 25 | 200 |
28 | 4 | 112 | 9 | 81 | 324 |
30 | 3 | 90 | 11 | 121 | 363 |
40 | 760 | 1736 | |||
Here, $N=40, $
$ \sum _ {i=1}^{7} f_i x_i=760$
$\therefore \ \ \overline{x}=\dfrac{\sum _ {i=1}^{7} f_i x_i}{N}=\dfrac{760}{40}=19$
Variance $=(\sigma^{2})=\dfrac{1}{N} \sum _ {i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{40} \times 1736=43.4$
5.
$x_i$ | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
---|---|---|---|---|---|---|---|
$f_i$ | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
Show Answer
Answer :
The data is obtained in tabular form as follows.
$\boldsymbol{{}x} _ {\boldsymbol{{}i}}$ | $\boldsymbol{{}f} \boldsymbol{{}i}$ | $\boldsymbol{{}f} _ {\boldsymbol{{}i}} \boldsymbol{{}x} _ {\boldsymbol{{}i}}$ | $x_i-\overline{x}$ | $(x_i-\overline{x})^{2}$ | $f_i(x_i-\overline{x})^{2}$ |
---|---|---|---|---|---|
92 | 3 | 276 | $- 8$ | 64 | 192 |
93 | 2 | 186 | $- 7$ | 49 | 98 |
97 | 3 | 291 | $- 3$ | 9 | 27 |
98 | 2 | 196 | $- 2$ | 4 | 8 |
102 | 6 | 612 | $2$ | 4 | 24 |
104 | 3 | 312 | $4$ | 16 | 48 |
109 | 3 | 327 | $9$ | 81 | 243 |
22 | 2200 | 640 | |||
Here, $N=22$
$ \sum _ {i=1}^{7} f_i x_i=2200 $
$\therefore \ \ \overline{x}=\dfrac{1}{N} \sum _ {i=1}^{7} f_i x_i=\dfrac{1}{22} \times 2200=100$
$\text{Variance} \ (\sigma^{2})=\dfrac{1}{N} \sum _ {i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{22} \times 640=29.09$
6. Find the mean and standard deviation using short-cut method.
$x_i$ | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
---|---|---|---|---|---|---|---|---|---|
$f_i$ | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Show Answer
Answer :
The data is obtained in tabular form as follows.
$\boldsymbol{{}x} _ {\boldsymbol{{}i}}$ | $f_i$ | $f_i=\dfrac{x_i-64}{1}$ | $y_i^{2}$ | $f_y y_i$ | $f_i y_i^{2}$ |
---|---|---|---|---|---|
60 | 2 | $ - 4$ | 16 | - 8 | 32 |
61 | 1 | $ - 3$ | 9 | $- 3$ | 9 |
62 | 12 | $- 2$ | 4 | $- $ 24 | 48 |
63 | 29 | $- 1$ | 1 | -29 | 29 |
64 | 25 | 0 | 0 | 0 | 0 |
65 | 12 | 1 | 1 | 12 | 12 |
66 | 10 | 2 | 4 | 20 | 40 |
67 | 4 | 3 | 9 | 12 | 36 |
68 | 5 | 4 | 16 | 20 | 80 |
100 | 220 | 0 | 286 | ||
$\overline{x}=A \dfrac{\sum _ {i=1}^{9} f_i y_i}{N} \times h=64+\dfrac{0}{100} \times 1=64+0=64$
$ \begin{aligned} \text{Variance,} \ \sigma^{2} & =\dfrac{h^{2}}{N^{2}}\left[N \sum _ {i=1}^{9} f_i y_i{ }^{2}-(\sum _ {i=1}^{9} f_i y_i)^{2}\right] \\ \\ & =\dfrac{1}{100^{2}}\left[100 \times 286-0\right] \\ \\ & =2.86 \end{aligned} $
$\therefore \ \ $ Standard deviation $(\sigma)=\sqrt{2.86}=1.69$
7. Find the mean and variance for the following frequency distributions in Exercises $7$ and $8.$
Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $150-180$ | $180-210$ |
---|---|---|---|---|---|---|---|
Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
Show Answer
Answer :
Class | Frequency $f_i$ | Mid-point $x_i$ | $y_i=\dfrac{x_i-105}{30}$ | $y_i^{2}$ | $f_i y_i$ | $f _iy_i{}^{2}$ |
---|---|---|---|---|---|---|
$0-30$ | 2 | 15 | $- 3$ | 9 | -6 | 18 |
$30-60$ | 3 | 45 | $- 2$ | 4 | $- 6$ | 12 |
$60-90$ | 5 | 75 | $- 1$ | 1 | $- 5$ | 5 |
$90-120$ | 10 | 105 | 0 | 0 | 0 | 0 |
$120-150$ | 3 | 135 | 1 | 1 | 3 | 3 |
$150-180$ | 5 | 165 | 2 | 4 | 10 | 20 |
$180-210$ | 2 | 195 | 3 | 9 | 6 | 18 |
30 | 2 | 76 | ||||
$\begin{aligned} \text { Here, } N & =30, h=30 \\ \\ \text { Mean, } \bar{x} & =A+\frac{\sum _ {i=1}^7 f_i y_i}{N} \times h \\ \\ & =105+\frac{2}{30} \times 30 \\ \\ & =105+2=107 \end{aligned}$
$ \begin{aligned} \text{Variance} \ (\sigma^{2}) & =\dfrac{h^{2}}{N^{2}}\left[N \sum _ {i=1}^{7} f_i y_i^{2}-(\sum _ {i=1}^{7} f_i y_i)^{2}\right] \\ \\ & =\dfrac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right] \\ \\ & =2280-4 \\ \\ & =2276 \end{aligned} $
8.
Classes | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
---|---|---|---|---|---|
Frequencies | 5 | 8 | 15 | 16 | 6 |
Show Answer
Answer :
Class | Frequency $\boldsymbol{{}f}_i$ |
Mid-point $\boldsymbol{{}x}_i$ | $y_i=\dfrac{x_i-25}{10}$ | $\boldsymbol{{}y}_i^{2}$ | $\boldsymbol{{}f y} _ {i}$ | $\boldsymbol{{}f y} _ {\mathbf{i}}{ }^{2}$ |
---|---|---|---|---|---|---|
$0-10$ | 5 | 5 | $- 2$ | 4 | $- 10$ | 20 |
$10-20$ | 8 | 15 | $a - 1$ | 1 | $- 8$ | 8 |
$20-30$ | 15 | 25 | 0 | 0 | 0 | 0 |
$30-40$ | 16 | 35 | 1 | 1 | 16 | 16 |
$40-50$ | 6 | 45 | 2 | 4 | 12 | 24 |
50 | 10 | 68 | ||||
$\overline{x}=A+\dfrac{\sum _ {i=1}^{5} f_i y_i}{N} \times h=25+\dfrac{10}{50} \times 10=25+2=27$
$ \begin{aligned} \text{Variance} \ (\sigma^{2}) & =\dfrac{h^{2}}{N^{2}}\left[N \sum _ {i=1}^{5} f_i y_i{ }^{2}-(\sum _ {i=1}^{5} f_i y_i)^{2}\right] \\ \\ & =\dfrac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right] \\ \\ & =\dfrac{1}{25}\left[3400-100\right]=\dfrac{3300}{25} \\ \\ & =132 \end{aligned} $
9. Find the mean, variance and standard deviation using short-cut method
Height in cms |
$70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
---|---|---|---|---|---|---|---|---|---|
No. of children |
3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
Show Answer
Answer :
Class interval | $f_i$ | $x_i$ | $u_i=\dfrac{x_i-A}{h}$ | $u_i^2$ | $f_i u_i$ | $f_i u_i^2$ |
---|---|---|---|---|---|---|
$70-75$ | 3 | 72.5 | -4 | 16 | -12 | 48 |
$75-80$ | 4 | 77.5 | -3 | 9 | -12 | 36 |
$80-85$ | 7 | 82.5 | -2 | 4 | -14 | 28 |
$85-90$ | 7 | 87.5 | -1 | 1 | -7 | 7 |
$90-95$ | 15 | 92.5 | 0 | 0 | 0 | 0 |
$95-100$ | 9 | 97.5 | 1 | 1 | 9 | 9 |
$100-105$ | 6 | 102.5 | 2 | 4 | 12 | 24 |
$105-110$ | 6 | 107.5 | 3 | 9 | 18 | 54 |
$110-115$ | 3 | 112.5 | 4 | 16 | 12 | 48 |
Total | 60 | 6 | 254 |
We have $N=\sum f_i=60$
Width of class $\mathrm{h}=5$
Assumed mean $\mathrm{A}=92.5$ (say)
$ \begin{aligned} & \text { Mean, } \overline{\mathrm{x}}=\mathrm{A}+\frac{\sum _ {\mathrm{i}=1}^9 \mathrm{f} _ {\mathrm{i}} \mathrm{u} _ {\mathrm{i}}}{\mathrm{ ~ N}} \times \mathrm{h} \\ \\ & =92.5+\frac{6}{60} \times 5=92.5+0.5=93 \\ \\ & \Rightarrow \overline{\mathrm{x}}=93 \end{aligned} $
$ \begin{aligned} \text { Variance } \sigma^2 & =h^2\left[\frac{\sum _ {i=1}^9 f_i u_i^2}{N}-\left(\frac{\sum _ {i=1}^9 f_i u_i}{N}\right)^2\right] \\ \\ \sigma^2 & =5^2\left[\frac{254}{60}-\left(\frac{6}{60}\right)^2\right] \\ \\ & =5^2 \frac{\left[60 \times 254-6^2\right]}{(60)^2} \\ \\ & =\frac{25}{3600}[15240-36] \\ \\ & =\frac{25}{3600} \times 15204 \\ \\ \sigma^2 & =105.58 \end{aligned} $
Standard Deviation $=\sqrt{\text { Variance }}$
$ \begin{aligned} \hspace{2.1cm} \sigma & =\sqrt{105 \cdot 5^8} \\ \\ \hspace{2.1cm} \sigma & =10.27 \end{aligned} $
10. The diameters of circles (in $mm$ ) drawn in a design are given below:
Diameters | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
---|---|---|---|---|---|
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[ Hint: First make the data continuous by making the classes as $32.5-36.5, 36.5-40.5, 40.5-44.5,44.5 - 48.5, 48.5 - 52.5$ and then proceed.]
Show Answer
Answer :
Since, the given frequency distribution is not continuous, so to make it continuous, we will subtract 0.5 from lower limit and add 0.5 to the upper limit of each class.
Class | $\mathrm{f} _ {\mathrm{i}}$ | $\mathrm{x} _ {\mathrm{i}}$ | $\mathrm{u} _ {\mathrm{i}}=\dfrac{\mathrm{x} _ {\mathrm{i}}-\mathrm{A}}{\mathrm{h}}$ | $\mathrm{u} _ {\mathrm{i}}^2$ | $f _ {\mathrm{i}} u_ i$ | $f_ i u_ i^2$ |
---|---|---|---|---|---|---|
$32.5-36.5$ | 15 | 34.5 | -2 | 4 | -30 | 60 |
$36.5-40.5$ | 17 | 38.5 | -1 | 1 | -17 | 17 |
$40.5-44.5$ | 21 | 42.5 | 0 | 0 | 0 | 0 |
$44.5-48.5$ | 22 | 46.5 | 1 | 1 | 22 | 22 |
$48.5-52.5$ | 25 | 50.5 | 2 | 4 | 50 | 100 |
Total | 100 | 25 | 199 | |||
Here, $\mathrm{N}=100, \mathrm{ ~ h}=4$
Let the assumed mean $\mathrm{A}=42.5$
$ \begin{aligned} \text { Mean } \bar{x} & =A+\frac{\sum _ {i=1}^5 f_ i u_ i}{N} \times h \\ \\ & =42.5+\frac{25}{100} \times 4=43.5 \end{aligned} $
$ \begin{aligned} \text { Variance }\left(\sigma^2\right) & =\frac{\mathrm{h}^2}{\mathrm{ ~ }^2}\left[\mathrm{ ~ N} \sum _ {\mathrm{i}=1}^5 \mathrm{f} _ {\mathrm{i}} \mathrm{u} _ {\mathrm{i}}^2-\left(\sum _ {\mathrm{i}=1}^5 \mathrm{f} _ {\mathrm{i}} \mathrm{u} _ {\mathrm{i}}\right)^2\right] \\ \\ & =\frac{16}{10000}\left[100 \times 199-(25)^2\right] \\ \\ & =\frac{16}{10000}[19900-625] \\ \\ & =\frac{16}{10000} \times 19275 \\ \\ & =30.84 \end{aligned} $
$ \therefore \text { Standard deviation }(\sigma) =5.55$