Chapter 13 Statistics EXERCISE 13.2

EXERCISE 13.2

Find the mean and variance for each of the data in Exercies $1$ to $5.$

1. $6,7,10,12,13,4,8,12$

Show Answer

Answer :

$6,7,10,12,13,4,8,12$

Mean, $\overline{x}=\dfrac{\sum _ {i=1}^{8} x_i}{n}=\dfrac{6+7+10+12+13+4+8+12}{8}=\dfrac{72}{8}=9$

The following table is obtained.

$X_i$ $(x_i-\bar{{}x})$ $(x_i-\overline{x})^{2}$
6 $- 3$ 9
7 $- 2$ 4
10 $- 1$ 1
12 3 9
13 4 16
4 -5 25
8 $- 1$ 1
12 3 9
74

Variance $(\sigma^{2})=\dfrac{1}{n} \sum _ {i=1}^{8}(x_i-\bar{{}x})^{2}=\dfrac{1}{8} \times 74=9.25$

2. First $n$ natural numbers

Show Answer

Answer :

The mean of first $n$ natural numbers is calculated as follows.

Mean $=\dfrac{\text{ Sum of all observations }}{\text{ Number of observations }}$

$\therefore \ \ $ Mean $=\dfrac{\dfrac{n(n+1)}{2}}{n}=\dfrac{n+1}{2}$

Variance $(\sigma^{2})=\dfrac{1}{n} \sum _ {i=1}^{n}(x_i-\bar{{}x})^{2}$

$\hspace{1.9cm}=\dfrac{1}{n} \sum _ {i=1}^{n}\left[x_i-(\dfrac{n+1}{2})\right]^{2}$

$\hspace{1.9cm}=\dfrac{1}{n} \sum _ {i=1}^{n} x_i{ }^{2}-\dfrac{1}{n} \sum _ {i=1}^{n} 2(\dfrac{n+1}{2}) x_i+\dfrac{1}{n} \sum _ {i=1}^{n}(\dfrac{n+1}{2})^{2}$

$\hspace{1.9cm}=\dfrac{1}{n} \dfrac{n(n+1)(2 n+1)}{6}-(\dfrac{n+1}{n})\left[\dfrac{n(n+1)}{2}\right]+\dfrac{(n+1)^{2}}{4 n} \times n$

$\hspace{1.9cm}=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{2}+\dfrac{(n+1)^{2}}{4}$

$\hspace{1.9cm}=\dfrac{(n+1)(2 n+1)}{6}-\dfrac{(n+1)^{2}}{4}$

$\hspace{1.9cm}=(n+1)\left[\dfrac{4 n+2-3 n-3}{12}\right]$

$\hspace{1.9cm}=\dfrac{(n+1)(n-1)}{12}$

$\hspace{1.9cm}=\dfrac{n^{2}-1}{12}$

3. First $10$ multiples of $3$

Show Answer

Answer :

The first $10$ multiples of $3$ are $3,6,9,12,15,18,21,24,27,30$

Here, number of observations, $n=10$

Mean, $\bar{{}x}=\dfrac{\sum _ {i=1}^{10} x_i}{10}=\dfrac{165}{10}=16.5$

The following table is obtained.

$x_i$ $(x_i-\overline{x})$ $(x_i-\overline{x})^{2}$
3 $- 13.5$ 182.25
6 $- 10.5$ 110.25
9 $- $ 7.5 56.25
12 $- $ 4.5 20.25
15 $- $ 1.5 2.25
18 1.5 2.25
21 4.5 20.25
24 7.5 56.25
27 10.5 110.25
30 13.5 182.25
742.5

Variance $(\sigma^{2})=\dfrac{1}{n} \sum _ {i=1}^{10}(x_i-\overline{x})^{2}=\dfrac{1}{10} \times 742.5=74.25$

4.

$x_i$ 6 10 14 18 24 28 30
$f_i$ 2 4 7 12 8 4 3
Show Answer

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{{}x} _ {\boldsymbol{{}i}}$ $\boldsymbol{{}f} \boldsymbol{{}i}$ $\boldsymbol{{}f} _ {\boldsymbol{{}i}} \boldsymbol{{}x} _ {\boldsymbol{{}i}}$ $x_i-\overline{x}$ $(x_i-\overline{x})^{2}$ $f_i(x_i-\overline{x})^{2}$
6 2 12 $- 13$ 169 338
10 4 40 $- 9$ 81 324
14 7 98 $- $’ 5 25 175
18 12 216 - 1 1 12
24 8 192 5 25 200
28 4 112 9 81 324
30 3 90 11 121 363
40 760 1736

Here, $N=40, $

$ \sum _ {i=1}^{7} f_i x_i=760$

$\therefore \ \ \overline{x}=\dfrac{\sum _ {i=1}^{7} f_i x_i}{N}=\dfrac{760}{40}=19$

Variance $=(\sigma^{2})=\dfrac{1}{N} \sum _ {i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{40} \times 1736=43.4$

5.

$x_i$ 92 93 97 98 102 104 109
$f_i$ 3 2 3 2 6 3 3
Show Answer

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{{}x} _ {\boldsymbol{{}i}}$ $\boldsymbol{{}f} \boldsymbol{{}i}$ $\boldsymbol{{}f} _ {\boldsymbol{{}i}} \boldsymbol{{}x} _ {\boldsymbol{{}i}}$ $x_i-\overline{x}$ $(x_i-\overline{x})^{2}$ $f_i(x_i-\overline{x})^{2}$
92 3 276 $- 8$ 64 192
93 2 186 $- 7$ 49 98
97 3 291 $- 3$ 9 27
98 2 196 $- 2$ 4 8
102 6 612 $2$ 4 24
104 3 312 $4$ 16 48
109 3 327 $9$ 81 243
22 2200 640

Here, $N=22$

$ \sum _ {i=1}^{7} f_i x_i=2200 $

$\therefore \ \ \overline{x}=\dfrac{1}{N} \sum _ {i=1}^{7} f_i x_i=\dfrac{1}{22} \times 2200=100$

$\text{Variance} \ (\sigma^{2})=\dfrac{1}{N} \sum _ {i=1}^{7} f_i(x_i-\bar{{}x})^{2}=\dfrac{1}{22} \times 640=29.09$

6. Find the mean and standard deviation using short-cut method.

$x_i$ 60 61 62 63 64 65 66 67 68
$f_i$ 2 1 12 29 25 12 10 4 5
Show Answer

Answer :

The data is obtained in tabular form as follows.

$\boldsymbol{{}x} _ {\boldsymbol{{}i}}$ $f_i$ $f_i=\dfrac{x_i-64}{1}$ $y_i^{2}$ $f_y y_i$ $f_i y_i^{2}$
60 2 $ - 4$ 16 - 8 32
61 1 $ - 3$ 9 $- 3$ 9
62 12 $- 2$ 4 $- $ 24 48
63 29 $- 1$ 1 -29 29
64 25 0 0 0 0
65 12 1 1 12 12
66 10 2 4 20 40
67 4 3 9 12 36
68 5 4 16 20 80
100 220 0 286

$\overline{x}=A \dfrac{\sum _ {i=1}^{9} f_i y_i}{N} \times h=64+\dfrac{0}{100} \times 1=64+0=64$

$ \begin{aligned} \text{Variance,} \ \sigma^{2} & =\dfrac{h^{2}}{N^{2}}\left[N \sum _ {i=1}^{9} f_i y_i{ }^{2}-(\sum _ {i=1}^{9} f_i y_i)^{2}\right] \\ \\ & =\dfrac{1}{100^{2}}\left[100 \times 286-0\right] \\ \\ & =2.86 \end{aligned} $

$\therefore \ \ $ Standard deviation $(\sigma)=\sqrt{2.86}=1.69$

7. Find the mean and variance for the following frequency distributions in Exercises $7$ and $8.$

Classes $0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $150-180$ $180-210$
Frequencies 2 3 5 10 3 5 2
Show Answer

Answer :

Class Frequency $f_i$ Mid-point $x_i$ $y_i=\dfrac{x_i-105}{30}$ $y_i^{2}$ $f_i y_i$ $f _iy_i{}^{2}$
$0-30$ 2 15 $- 3$ 9 -6 18
$30-60$ 3 45 $- 2$ 4 $- 6$ 12
$60-90$ 5 75 $- 1$ 1 $- 5$ 5
$90-120$ 10 105 0 0 0 0
$120-150$ 3 135 1 1 3 3
$150-180$ 5 165 2 4 10 20
$180-210$ 2 195 3 9 6 18
30 2 76

$\begin{aligned} \text { Here, } N & =30, h=30 \\ \\ \text { Mean, } \bar{x} & =A+\frac{\sum _ {i=1}^7 f_i y_i}{N} \times h \\ \\ & =105+\frac{2}{30} \times 30 \\ \\ & =105+2=107 \end{aligned}$

$ \begin{aligned} \text{Variance} \ (\sigma^{2}) & =\dfrac{h^{2}}{N^{2}}\left[N \sum _ {i=1}^{7} f_i y_i^{2}-(\sum _ {i=1}^{7} f_i y_i)^{2}\right] \\ \\ & =\dfrac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right] \\ \\ & =2280-4 \\ \\ & =2276 \end{aligned} $

8.

Classes $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
Frequencies 5 8 15 16 6
Show Answer

Answer :

Class Frequency
$\boldsymbol{{}f}_i$
Mid-point $\boldsymbol{{}x}_i$ $y_i=\dfrac{x_i-25}{10}$ $\boldsymbol{{}y}_i^{2}$ $\boldsymbol{{}f y} _ {i}$ $\boldsymbol{{}f y} _ {\mathbf{i}}{ }^{2}$
$0-10$ 5 5 $- 2$ 4 $- 10$ 20
$10-20$ 8 15 $a - 1$ 1 $- 8$ 8
$20-30$ 15 25 0 0 0 0
$30-40$ 16 35 1 1 16 16
$40-50$ 6 45 2 4 12 24
50 10 68

$\overline{x}=A+\dfrac{\sum _ {i=1}^{5} f_i y_i}{N} \times h=25+\dfrac{10}{50} \times 10=25+2=27$

$ \begin{aligned} \text{Variance} \ (\sigma^{2}) & =\dfrac{h^{2}}{N^{2}}\left[N \sum _ {i=1}^{5} f_i y_i{ }^{2}-(\sum _ {i=1}^{5} f_i y_i)^{2}\right] \\ \\ & =\dfrac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right] \\ \\ & =\dfrac{1}{25}\left[3400-100\right]=\dfrac{3300}{25} \\ \\ & =132 \end{aligned} $

9. Find the mean, variance and standard deviation using short-cut method

Height
in cms
$70-75$ $75-80$ $80-85$ $85-90$ $90-95$ $95-100$ $100-105$ $105-110$ $110-115$
No. of
children
3 4 7 7 15 9 6 6 3
Show Answer

Answer :

Class interval $f_i$ $x_i$ $u_i=\dfrac{x_i-A}{h}$ $u_i^2$ $f_i u_i$ $f_i u_i^2$
$70-75$ 3 72.5 -4 16 -12 48
$75-80$ 4 77.5 -3 9 -12 36
$80-85$ 7 82.5 -2 4 -14 28
$85-90$ 7 87.5 -1 1 -7 7
$90-95$ 15 92.5 0 0 0 0
$95-100$ 9 97.5 1 1 9 9
$100-105$ 6 102.5 2 4 12 24
$105-110$ 6 107.5 3 9 18 54
$110-115$ 3 112.5 4 16 12 48
Total 60 6 254

We have $N=\sum f_i=60$

Width of class $\mathrm{h}=5$

Assumed mean $\mathrm{A}=92.5$ (say)

$ \begin{aligned} & \text { Mean, } \overline{\mathrm{x}}=\mathrm{A}+\frac{\sum _ {\mathrm{i}=1}^9 \mathrm{f} _ {\mathrm{i}} \mathrm{u} _ {\mathrm{i}}}{\mathrm{ ~ N}} \times \mathrm{h} \\ \\ & =92.5+\frac{6}{60} \times 5=92.5+0.5=93 \\ \\ & \Rightarrow \overline{\mathrm{x}}=93 \end{aligned} $

$ \begin{aligned} \text { Variance } \sigma^2 & =h^2\left[\frac{\sum _ {i=1}^9 f_i u_i^2}{N}-\left(\frac{\sum _ {i=1}^9 f_i u_i}{N}\right)^2\right] \\ \\ \sigma^2 & =5^2\left[\frac{254}{60}-\left(\frac{6}{60}\right)^2\right] \\ \\ & =5^2 \frac{\left[60 \times 254-6^2\right]}{(60)^2} \\ \\ & =\frac{25}{3600}[15240-36] \\ \\ & =\frac{25}{3600} \times 15204 \\ \\ \sigma^2 & =105.58 \end{aligned} $

Standard Deviation $=\sqrt{\text { Variance }}$

$ \begin{aligned} \hspace{2.1cm} \sigma & =\sqrt{105 \cdot 5^8} \\ \\ \hspace{2.1cm} \sigma & =10.27 \end{aligned} $

10. The diameters of circles (in $mm$ ) drawn in a design are given below:

Diameters $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[ Hint: First make the data continuous by making the classes as $32.5-36.5, 36.5-40.5, 40.5-44.5,44.5 - 48.5, 48.5 - 52.5$ and then proceed.]

Show Answer

Answer :

Since, the given frequency distribution is not continuous, so to make it continuous, we will subtract 0.5 from lower limit and add 0.5 to the upper limit of each class.

Class $\mathrm{f} _ {\mathrm{i}}$ $\mathrm{x} _ {\mathrm{i}}$ $\mathrm{u} _ {\mathrm{i}}=\dfrac{\mathrm{x} _ {\mathrm{i}}-\mathrm{A}}{\mathrm{h}}$ $\mathrm{u} _ {\mathrm{i}}^2$ $f _ {\mathrm{i}} u_ i$ $f_ i u_ i^2$
$32.5-36.5$ 15 34.5 -2 4 -30 60
$36.5-40.5$ 17 38.5 -1 1 -17 17
$40.5-44.5$ 21 42.5 0 0 0 0
$44.5-48.5$ 22 46.5 1 1 22 22
$48.5-52.5$ 25 50.5 2 4 50 100
Total 100 25 199

Here, $\mathrm{N}=100, \mathrm{ ~ h}=4$

Let the assumed mean $\mathrm{A}=42.5$

$ \begin{aligned} \text { Mean } \bar{x} & =A+\frac{\sum _ {i=1}^5 f_ i u_ i}{N} \times h \\ \\ & =42.5+\frac{25}{100} \times 4=43.5 \end{aligned} $

$ \begin{aligned} \text { Variance }\left(\sigma^2\right) & =\frac{\mathrm{h}^2}{\mathrm{ ~ }^2}\left[\mathrm{ ~ N} \sum _ {\mathrm{i}=1}^5 \mathrm{f} _ {\mathrm{i}} \mathrm{u} _ {\mathrm{i}}^2-\left(\sum _ {\mathrm{i}=1}^5 \mathrm{f} _ {\mathrm{i}} \mathrm{u} _ {\mathrm{i}}\right)^2\right] \\ \\ & =\frac{16}{10000}\left[100 \times 199-(25)^2\right] \\ \\ & =\frac{16}{10000}[19900-625] \\ \\ & =\frac{16}{10000} \times 19275 \\ \\ & =30.84 \end{aligned} $

$ \therefore \text { Standard deviation }(\sigma) =5.55$



Table of Contents