Chapter 8 Sequences And Series Miscellaneous Exercise

Miscellaneous Exercise On Chapter 8

1. If $f$ is a function satisfying $f\left(x+y\right)=f\left(x\right) f\left(y\right)$ for all $x, y \in \mathbf{N}$ such that $ f\left(1\right)=3 \text{ and } \sum _ {x=1}^{n} f\left(x\right)=120 \text{, find the value of } n $

Show Answer

Answer :

It is given that,

$f\left(x+y\right)=f\left(x\right) \times f\left(y\right)$ for all $x, y \in N\qquad \ldots\left(1\right)$

$f\left(1\right)=3$

Taking $x=y=1$ in $\left(1\right)$, we obtain

$f\left(1+1\right)=f\left(2\right)=f\left(1\right)\times f\left(1\right)=3 \times 3=9$

Similarly,

$f\left(1+1+1\right)=f\left(3\right)=f\left(1+2\right)=f\left(1\right) f\left(2\right)=3 \times 9=27$

$f\left(4\right)=f\left(1+3\right)=f\left(1\right) f\left(3\right)=3 \times 27=81$

$\therefore \ \ f\left(1\right), f\left(2\right), f\left(3\right), \ldots$, that is $3,9,27, \ldots$, forms a $G.P.$ with both the first term and common ratio equal to $3 .$

It is known that,

$ S_n=\dfrac{a\left(r^{n}-1\right)}{r-1} $

It is given that, $\sum _ {x=1}^{n} f\left(x\right)=120$

$\therefore \ \ 120=\dfrac{3\left(3^{n}-1\right)}{3-1}$

$\Rightarrow 120=\dfrac{3}{2}\left(3^{n}-1\right)$

$\Rightarrow 3^{n}-1=80$

$\Rightarrow 3^{n}=81=3^{4}$

$\therefore \ \ n=4$

Thus, the value of $n$ is $4 .$

2. The sum of some terms of $G.P.$ is $315$ whose first term and the common ratio are $5$ and $2,$ respectively. Find the last term and the number of terms.

Show Answer

Answer :

Let the sum of $n$ terms of the $G.P.$ be $315 .$

It is known that, $S_n=\dfrac{a\left(r^{n}-1\right)}{r-1}$

It is given that the first term $a$ is $5$ and common ratio $r$ is $2 .$

$\therefore \ \ 315=\dfrac{5\left(2^{n}-1\right)}{2-1}$

$\Rightarrow 2^{n}-1=63$

$\Rightarrow 2^{n}=64=\left(2\right)^{6}$

$\Rightarrow n=6$

$\therefore \ \ $ Last term of the G.P $=6^{\text{th }}$ term $=a r^{6 - 1}=\left(5\right)\left(2\right)^{5}=\left(5\right)\left(32\right)=160$

Thus, the last term of the $G.P.$ is $160.$

3. The first term of a $G.P.$ is $1 .$ The sum of the third term and fifth term is $90 .$ Find the common ratio of $G.P.$

Show Answer

Answer :

Let $a$ and $r$ be the first term and the common ratio of the $G.P.$ respectively.

$\therefore \quad a_{1}=1$

$a_3=a r^{2}=r^{2}$

$a_5=a r^{4}=r^{4}$

$\therefore \ \ r^{2}+r^{4}=90$

$\Rightarrow r^{4}+r^{2}- 90=0$

On solving the equation

$\Rightarrow r^{2}=\dfrac{-1+\sqrt{1+360}}{2}=\dfrac{-1 \pm \sqrt{361}}{2}$

$\Rightarrow \dfrac{-1 \pm 19}{2}=-10$ or $9$

$\therefore \ \ r= \pm 3 \ \ $ (Taking real roots)

Thus, the common ratio of the $G.P.$ is $\pm 3$.

4. The sum of three numbers in $G.P.$ is $56$ If we subtract $1, 7, 21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

Show Answer

Answer :

Let the three numbers in $G.P.$ be $a$, $a r$, and $a r^{2}$.

From the given condition, $a+a r+a r^{2}=56$

$\Rightarrow a\left(1+r+r^{2}\right)=56$

$\Rightarrow a=\dfrac{56}{1+r+r^{2}}\qquad \ldots\left(1\right)$

$a - 1 , ar -$ $7, a r^{2} - 21$ forms an $A.P.$

$ \therefore \ \ \left(ar - 7\right)-\left(a-1\right) = \left(ar^2 - 21\right) - \left(ar - 7\right) $

$\Rightarrow ar - a - 6=a r^{2} - ar - 14$

$\Rightarrow a r^{2} - 2 a r+a=8$

$\Rightarrow a r^{2}- a r- a r+a=8$

$\Rightarrow a\left(r^{2}+1 - 2 r\right)=8$

$\Rightarrow a\left(r- 1\right)^{2}=8$

$\Rightarrow \dfrac{56}{1+r+r^{2}}\left(r-1\right)^{2}=8$

[Using $\left(1\right)$]

$\Rightarrow 7\left(r^{2} - 2 r+1\right)=1+r+r^{2}$

$\Rightarrow 7 r^{2} - 14 r + 7 - 1 - r - r^{2}=0$

$\Rightarrow 6 r^{2} - 15 r+6=0$

$\Rightarrow 6 r^{2} - 12 r - 3 r+6=0$

$ \therefore \ \ {6r\left(r-2\right)-3\left(r-2\right)} $

$\Rightarrow\left(6 r- 3\right)\left(r- 2\right)=0$

$\therefore \ \ r=2, \dfrac{1}{2}$

From $\left(1\right)$

When $r=2, a=8$

When $r=\dfrac{1}{2}, a=32$

Therefore, when $r=2$, the three numbers in $G.P.$ are $8, 16,$ and $32.$

When $r=\dfrac{1}{2}$, the three numbers in $G.P.$ are $32, 16,$ and $8.$

Thus, in either case, the three required numbers are $8,16 ,$ and $32 .$

5. A $G.P.$ consists of an even number of terms. If the sum of all the terms is $5$ times the sum of terms occupying odd places, then find its common ratio.

Show Answer

Answer :

Let the $G.P.$ be $T_1, T_2, T_3, T_4, \ldots T _ {2 n}$.

Number of terms $=2 n$

According to the given condition,

$T_1+T_2+T_3+\ldots+T _ {2 n}=5[T_1+T_3+\ldots+T _ {2_n{-1}}]$

$\Rightarrow T_1+T_2+T_3+ \ldots +T_{2 n}- 5[T_1+T_3+\ldots + T_{2n-1}] =0$

$\Rightarrow T_2+T_4+\ldots+T _ {2 n}=4[T_1+T_3+\ldots+T _ {2 n {-1}}]$

Let the $G.P.$ be $a, a r, a r^{2}, a r^{3}, \ldots$

$\therefore \ \ \dfrac{ar\left(r^{n}-1\right)}{r-1}=\dfrac{4 \times a\left(r^{n}-1\right)}{r-1}$

$\Rightarrow a r=4 a$

$\Rightarrow r=4$

Thus, the common ratio of the $G.P.$ is $4.$

6. If $\dfrac{a+b x}{a-b x}=\dfrac{b+c x}{b-c x}=\dfrac{c+d x}{c-d x}\left(x \neq 0\right)$, then show that $a, b, c$ and $d$ are in $G.P.$

Show Answer

Answer:

It is given that,

$ \dfrac{a+b x}{a-b x}=\dfrac{b+c x}{b-c x} $

$ \Rightarrow\left(a+b x\right)\left(b-c x\right)=\left(b+c x\right)\left(a-b x\right) $

$ \Rightarrow a b-a c x+b^{2} x-b c x^{2}=a b-b^{2} x+a c x-b c x^{2} $

$ \Rightarrow 2 b^{2} x=2 a c x $

$ \Rightarrow b^{2}=a c $

$ \Rightarrow \dfrac{b}{a}=\dfrac{c}{b} \qquad \ldots{\left(1\right)}$

Also, $\dfrac{b+c x}{b-c x}=\dfrac{c+d x}{c-d x}$

$\Rightarrow\left(b+c x\right)\left(c-d x\right)=\left(b-c x\right)\left(c+d x\right)$

$\Rightarrow b c-b d x+c^{2} x-c d x^{2}=b c+b d x-c^{2} x-c d x^{2}$

$\Rightarrow 2 c^{2} x=2 b d x$

$\Rightarrow c^{2}=b d$

$\Rightarrow \dfrac{c}{b}=\dfrac{d}{c}\qquad \ldots\left(2\right)$

From $\left(1\right)$ and $\left(2\right),$ we obtain

$ \dfrac{b}{a}=\dfrac{c}{b}=\dfrac{d}{c} $

Thus, $a, b, c$, and $d$ are in $G.P.$

7. Let $S$ be the sum, $P$ the product and $R$ the sum of reciprocals of $n$ terms in a $G.P.$ Prove that $P^{2} R^{n}=S^{n}$.

Show Answer

Answer :

Let the $G.P.$ be $a, a r, a r^{2}, a r^{3}, \ldots a r^{n-1} \ldots$

According to the given information,

$ \begin{aligned} & S =\dfrac{a\left(r^{n}-1\right)}{r-1} \\ \\ & P=a^{n} \times r^{1+2+\ldots+n-1} \\ \\ & \quad =a^{n} r^{\dfrac{n\left(n-1\right)}{2}} \qquad {[\because \text{ Sum of first } n \text{ natural numbers is } n \dfrac{\left(n+1\right)}{2}]} \\ \\ &\therefore \ \ P^2=a^{2n}r^{n\left(n-1\right)} \\ \\ & R=\dfrac{1}{a}+\dfrac{1}{a r}+\ldots+\dfrac{1}{a r^{n-1}} \\ \\ & \quad =\dfrac{r^{n-1}+r^{n-2}+\ldots r+1}{a r^{n-1}} \\ \\ & \quad =\dfrac{1\left(r^{n}-1\right)}{\left(r-1\right)} \times \dfrac{1}{a r^{n-1}} \quad[\because 1, r, \ldots r^{n-1} \text{ forms a G.P }] \\ \\ & \quad =\dfrac{r^{n}-1}{a r^{n-1}\left(r-1\right)} \\ \\ & \therefore \ \ P^{2} R^{n}=a^{2 n} r^{n\left(n-1\right)} \dfrac{\left(r^{n}-1\right)^{n}}{a^{n} r^{n\left(n-1\right)}\left(r-1\right)^{n}} \\ \\ & \qquad\qquad=\dfrac{a^{n}\left(r^{n}-1\right)^{n}}{\left(r-1\right)^{n}} \\ \\ &\qquad\qquad =[\dfrac{a\left(r^{n}-1\right)}{\left(r-1\right)}]^{n} =S^{n} \end{aligned} $

Hence, $ \ \ P^{2} R^{n}=S^{n}$

8. If $a, b, c, d$ are in $G.P,$ prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$

Show Answer

Answer :

It is given that $a, b, c$, and $d$ are in $G.P.$

$\therefore \ \ b^{2}=a c\qquad \ldots\left(1\right)$

$c^{2}=b d\qquad \ldots\left(2\right)$

$a d=b c\qquad \ldots\left(3\right)$

It has to be proved that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in $G.P.$ i.e.,

$\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$

Consider $\text{L.H.S.}$

$\left(b^{n}+c^{n}\right)^{2}=b^{2 n}+2 b^{n} c^{n}+c^{2 n}$

$\qquad\qquad \ =\left(b^{2}\right)^{n}+2 b^{n} c^{n}+\left(c^{2}\right)^{n}$

$\qquad\qquad \ =\left(a c\right)^{n}+2 b^{n} c^{n}+\left(b d\right)^{n}[ $ Using $\left(1\right)$ and $\left(2\right)]$

$\qquad\qquad \ =a^{n} c^{n}+b^{n} c^{n}+b^{n} c^{n}+b^{n} d^{n}$

$\qquad\qquad \ =a^{n} c^{n}+b^{n} c^{n}+a^{n} d^{n}+b^{n} d^{n}$ $[$ Using $\left(3\right)]$

$\qquad\qquad \ =c^{n}\left(a^{n}+b^{n}\right)+d^{n}\left(a^{n}+b^{n}\right)$

$\qquad\qquad \ =\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$

$\qquad\qquad \ = \text{R.H.S.}$

$\therefore \ \ \left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right)\left(c^{n}+d^{n}\right)$

Thus, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right)$, and $\left(c^{n}+d^{n}\right)$ are in $G.P.$

9. If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$, where $a, b, c, d$ form a $G.P.$ Prove that $\left(q+p\right):\left(q-p\right)=17: 15$.

Show Answer

Answer :

It is given that $a$ and $b$ are the roots of $x^2-3 x+p=0$

$\therefore \ \ a+b=3$ and $a b=p\qquad \ldots \left(1\right)$

Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$

$\therefore \ \ c+d=12$ and $c d=q\qquad \ldots\left(2\right)$

It is given that $a, b, c, d$ are in $G.P.$

Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$

From $\left(1\right)$ and $\left(2\right),$ we obtain

$x+x r=3$

$\Rightarrow x\left(1+r\right)=3$

$x r^{2}+x r^{3}=12$

$\Rightarrow x r^{2}\left(1+r\right)=12$

On dividing, we obtain

$\dfrac{x r^{2}\left(1+r\right)}{x\left(1+r\right)}=\dfrac{12}{3}$

$\Rightarrow r^{2}=4$

$\Rightarrow r= \pm 2$

When $r=2, x=\dfrac{3}{1+2}=\dfrac{3}{3}=1$

When $r=-2, x=\dfrac{3}{1-2}=\dfrac{3}{-1}=-3$

Case I:

When $r=2$ and $x=1$,

$a b=x^{2} r=2$

$c d=x^{2} r^{5}=32$

$\therefore \ \ \dfrac{q+p}{q-p}=\dfrac{32+2}{32-2}=\dfrac{34}{30}=\dfrac{17}{15}$

i.e., $\left(q+p\right):\left(q-p\right)=17: 15$

Case II:

When $r=-2, x=1,$

$a b=x^{2} r=-18$

$c d=x^{2} r^{5}=- 288$

$\therefore \ \ \dfrac{q+p}{q-p}=\dfrac{-288-18}{-288+18}=\dfrac{-306}{-270}=\dfrac{17}{15}$

i.e., $\left(q+p\right):\left(q-p\right)=17: 15$

Thus, in both the cases, we obtain $(q+p):(q - p)=17: 15$

10. The ratio of the A.M. and G.M. of two positive numbers $a$ and $b$, is $m: n$. Show that $a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.

Show Answer

Answer :

Let the two numbers be $a$ and $b$.

A.M $=\dfrac{a+b}{2}$ and G.M. $=\sqrt{a b}$

According to the given condition,

$\dfrac{a+b}{2 \sqrt{a b}}=\dfrac{m}{n}$

$\Rightarrow \dfrac{\left(a+b\right)^{2}}{4\left(a b\right)}=\dfrac{m^{2}}{n^{2}}$

$\Rightarrow\left(a+b\right)^{2}=\dfrac{4 a b m^{2}}{n^{2}}$

$\Rightarrow\left(a+b\right)=\dfrac{2 \sqrt{a b} m}{n}\qquad \ldots\left(1\right)$

Using this in the identity $\left(a \text{ - } b\right)^{2}=\left(a+b\right)^{2} - 4 a b$, we obtain

$ \left(a-b\right)^{2}=\dfrac{4 a b m^{2}}{n^{2}}-4 a b=\dfrac{4 a b\left(m^{2}-n^{2}\right)}{n^{2}}$

$ \Rightarrow\left(a-b\right)=\dfrac{2 \sqrt{a b} \sqrt{m^{2}-n^{2}}}{n} \qquad \ldots{\left(2\right)}$

Adding $\left(1\right)$ and $\left(2\right),$ we obtain

$ \begin{aligned} & 2 a=\dfrac{2 \sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right) \\ \\ & \Rightarrow a=\dfrac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right) \end{aligned} $

Substituting the value of $a$ in $\left(1\right),$ we obtain

$ \begin{aligned} & b=\dfrac{2 \sqrt{a b}}{n} m-\dfrac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right) \\ \\ & \ =\dfrac{\sqrt{a b}}{n} m-\dfrac{\sqrt{a b}}{n} \sqrt{m^{2}-n^{2}} \\ \\ & \ =\dfrac{\sqrt{a b}}{n}\left(m-\sqrt{m^{2}-n^{2}}\right) \\ \\ & \therefore \ \ a: b=\dfrac{a}{b}=\dfrac{\dfrac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)}{\dfrac{\sqrt{a b}}{n}\left(m-\sqrt{m^{2}-n^{2}}\right)}=\dfrac{\left(m+\sqrt{m^{2}-n^{2}}\right)}{\left(m-\sqrt{m^{2}-n^{2}}\right)} \end{aligned} $

Thus, $a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$

11. Find the sum of the following series up to $n$ terms:

$\left(i\right) \ \ $ $5+55+555+\ldots$

$\left(ii\right) \ \ $ $0.6+0.66+0.666+\ldots$

Show Answer

Answer :

$\left(i\right) \ \ $ $5+55+555+\ldots$

Let $S_n=5+55+555+\ldots$. to $n$ terms

$ \begin{aligned} &\qquad =\dfrac{5}{9}\bigg[9+99+999+\ldots \text{ to } n \text{ terms }\bigg] \\ \\ &\qquad =\dfrac{5}{9}\bigg[\left(10-1\right)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text{ to } n \text{ terms }\bigg] \\ \\ &\qquad =\dfrac{5}{9}\bigg[\left(10+10^{2}+10^{3}+\ldots \text{ n terms }\right)-\left(1+1+\ldots n \text{ terms }\right)\bigg] \\ \\ &\qquad =\dfrac{5}{9}\bigg[\dfrac{10\left(10^{n}-1\right)}{10-1}-n\bigg] \\ \\ &\qquad =\dfrac{5}{9}\bigg[\dfrac{10\left(10^{n}-1\right)}{9}-n\bigg] \\ \\ &\qquad =\dfrac{50}{81}\left(10^{n}-1\right)-\dfrac{5 n}{9} \end{aligned} $

$\left(ii\right) \ \ $ $0.6+0.66+0.666+\ldots$

Let $S_n=0.6+0.66+0.666+\ldots$ to $n$ terms

$\quad\qquad=6\bigg[0.1+0.11+0.111+\ldots$ to $n$ terms $\bigg]$

$\quad\qquad=\dfrac{6}{9}\bigg[0.9+0.99+0.999+\ldots$ to $n$ terms $\bigg]$

$\quad\qquad=\dfrac{6}{9}\bigg[\left(1-\dfrac{1}{10}\right)+\left(1-\dfrac{1}{10^{2}}\right)+\left(1-\dfrac{1}{10^{3}}\right)+\ldots.$ to n terms $\bigg]$

$\quad\qquad=\dfrac{2}{3}\bigg[\left(1+1+\ldots n. \ \text{terms}\right)-\dfrac{1}{10}\left(1+\dfrac{1}{10}+\dfrac{1}{10^{2}}+\ldots n. \ \text{terms}\right)\bigg]$

$\quad\qquad=\dfrac{2}{3}\left[n-\dfrac{1}{10}\left(\dfrac{1-\left(\dfrac{1}{10}\right)^{n}}{1-\dfrac{1}{10}}\right)\right]$

$\quad\qquad=\dfrac{2}{3} n-\dfrac{2}{30} \times \dfrac{10}{9}\left(1-10^{-n}\right)$

$\quad\qquad=\dfrac{2}{3} n-\dfrac{2}{27}\left(1-10^{-n}\right)$

12. Find the $20^{\text{th }}$ term of the series $2 \times 4+4 \times 6+6 \times 8+\ldots+n$ terms.

Show Answer

Answer :

The given series is $2 \times 4+4 \times 6+6 \times 8+\ldots n$ terms

$\therefore \ \ n^{\text{th }}$ term $=a_n=2 n \times\left(2 n+2\right)=4 n^{2}+4 n$

$\qquad\quad \ a _ {20}=4\left(20\right)^{2}+4\left(20\right)=4\left(400\right)+80=1600+80=1680$

Thus, the $20^{\text{th }}$ term of the series is 1680 .

13. A farmer buys a used tractor for Rs 12000 . He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?

Show Answer

Answer :

It is given that the farmer pays Rs 6000 in cash.

Therefore, unpaid amount = Rs 12000 - Rs $6000=$ Rs 6000

According to the given condition, the interest paid annually is $12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000, \ldots, 12 \%$ of 500

Thus, total interest to be paid $=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots+12 \%$ of 500

$\hspace{3.8cm}=12 \%$ of $\left(6000+5500+5000+\ldots+500\right)$

$\hspace{3.8cm}=12 \%$ of $\left(500+1000+1500+\ldots+6000\right)$

Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500.$

Let the number of terms of the $A.P.$ be $n$.

$\therefore \ \ 6000=500+\left(n - 1\right) 500$

$\Rightarrow 1+\left(n- 1\right)=12$

$\Rightarrow n=12$

$\therefore \ \ $ Sum of the $A.P=\dfrac{12}{2}\bigg[2\left(500\right)+\left(12-1\right)\left(500\right)\bigg]=6\big[1000+5500\big]=6\left(6500\right)=39000$

Thus, total interest to be paid $=12 \%$ of $\left(500+1000+1500+\ldots+6000\right)=12 \%$ of $39000=$ Rs $4680$

Thus, cost of tractor $=( $ Rs $12000+$ Rs $4680) $ $=$ Rs $16680$

14. Shamshad Ali buys a scooter for Rs $22000 .$ He pays Rs $4000$ cash and agrees to pay the balance in annual instalment of Rs $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?

Show Answer

Answer :

Given Shamshad Ali buys a scooter for Rs. 22000 and pay Rs 4000 in cash

$\Rightarrow$ Unpaid amount $=22000-4000=$ Rs $18000 .$

At the end of first year, interest paid $=10 \%$ of $18000$

Amount paid as instalment at the end of $1$ year $=$ Rs $1000.$

So, loan amount left $=$ Rs $18000-1000=$ Rs $17000$

Now, at the end of second year, interest paid $10 \%$ of $17000$

Amount paid as instalment at the end of second year $=$ Rs $1000$

So, loan amount left $=$ Rs $17000-1000=$ Rs $16000$

So, total interest to be paid $=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots+10 \% \text { of } 1000 . $

$\hspace{3.7cm} =10 \% \text { of }(18000+17000+16000+\ldots 1000)$

$\hspace{3.7cm}=10 \% \text { of }(1000+2000+3000+\ldots+18000) \qquad\ldots .(1)$

Here, $1000,2000,3000, \ldots 18000$ forms an $A.P.$ with both the first term and common difference equals to $1000 .$

Let, the number of terms of $A.P.$ be $n$.

$\therefore 18000=1000+(\mathrm{n}-1)(1000) $

$\Rightarrow \mathrm{n}=18 $

$\therefore \mathrm{S}_ {18}=1000+2000+\ldots+18000 $

$\qquad\quad=\dfrac{18}{2}\big[2(1000)+(18-1)(1000)\big]$

$\qquad\quad=9\big[2000+17000\big]=171000$

So, by eqn(1),

$\text { Total interest paid }=10 \% \text { of }(18000+17000+16000+\ldots+1000) $

$\hspace{3.1cm}=10 \% \text { of Rs. } 1,71,000$

$\hspace{3.1cm}=\text { Rs. } 17,100$

So, the cost of scooter to him is Rs. $22000+17100=39100$

15. A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when $8^{\text{th }}$ set of letter is mailed.

Show Answer

Answer : According to question, one person writes letter to his $4$ friends Now, each of these $4 $friends will write letter to their $4$ friends. So, the number of letters written here will be $4{ }^2$ This continues….

So, the number of letters written forms a G.P. $4,4^2, 4^3, \ldots .4^8$

Here, $a=4, r=4, n=8$

We know Sum of $n$ terms of G.P. $=\dfrac{a\left(r^n-1\right)}{r-1}$

So, sum of 8 terms of G.P. is $\dfrac{4\left(4^8-1\right)}{4^{-1}}=\dfrac{4(65536-1)}{3}=\dfrac{4 \times 65535}{3}=87380$

So, the number of letter written in $8$ th set of letter is $87380.$

Cost to mail one letter is $50$ paise

So, cost to mail $87380$ is Rs $\dfrac{50}{100} \times 8738 0=$ Rs. $43690$

16. A man deposited Rs $10000$ in a bank at the rate of $5 \%$ simple interest annually. Find the amount in $15^{\text{th }}$ year since he deposited the amount and also calculate the total amount after 20 years.

Show Answer

Answer :

It is given that the man deposited Rs $10000$ in a bank at the rate of 5\% simple interest annually.

$\therefore \ \ $ Interest in first year $ =\dfrac{5}{100} \times Rs 10000=Rs 500 $

$\therefore \ \ $ Amount in $15^{\text{th }}$ year $=Rs$ $ 10000+\underbrace{500+500+\ldots+500} _ {14 \text{ times }} $

$\hspace{3.3cm}=$ Rs $10000+14 \times$ Rs $500$

$\hspace{3.3cm}=$ Rs $10000+$ Rs $7000$

$\hspace{3.3cm}=$ Rs $17000$

Amount after $20$ years $=$ Rs $10000+\underbrace{500+500+\ldots+500} _ {20 \text{ times }} $

$\hspace{3cm}=$ Rs $10000+20 \times$ Rs $500$

$\hspace{3cm}=$ Rs $10000+$ Rs $10000$

$\hspace{3cm}=$ Rs $20000$

17. A manufacturer reckons that the value of a machine, which costs him Rs. 15625 , will depreciate each year by $20 \%$. Find the estimated value at the end of 5 years.

Show Answer

Answer :

Cost of machine $=$ Rs $15625$

Machine depreciates by $20\%$ every year.

Therefore, its value after every year is $80 \%$ of the original cost i.e., $\dfrac{4}{5}$ of the original cost.

$\therefore \ \ $ Value at the end of 5 years $=15625 \times \underbrace{\dfrac{4}{5} \times \dfrac{4}{5} \times \ldots \times \dfrac{4}{5}} _ {5 \text{ times }}=5 \times 1024=5120$

Thus, the value of the machine at the end of 5 years is Rs $5120 .$

18. $150$ workers were engaged to finish a job in a certain number of days. $4$ workers dropped out on second day, $4$ more workers dropped out on third day and so on. It took $8$ more days to finish the work. Find the number of days in which the work was completed.

Show Answer

Answer :

Let $x$ be the number of days in which $150$ workers finish the work.

According to the given information,

$150 x=150+146+142+\ldots .\left(x+8\right)$ terms

The series $150+146+142+\ldots .\left(x+8\right)$ terms is an $A.P.$ with first term $146 ,$ common difference $- 4$ and number of terms as $\left(x+8\right)$

$ \begin{aligned} & \Rightarrow 150 x=\dfrac{\left(x+8\right)}{2}[2\left(150\right)+\left(x+8-1\right)\left(-4\right)] \\ \\ & \Rightarrow 150 x=\left(x+8\right)[150+\left(x+7\right)\left(-2\right)] \\ \\ & \Rightarrow 150 x=\left(x+8\right)\left(150-2 x-14\right) \\ \\ & \Rightarrow 150 x=\left(x+8\right)\left(136-2 x\right) \\ \\ & \Rightarrow 75 x=\left(x+8\right)\left(68-x\right) \\ \\ & \Rightarrow 75 x=68 x-x^{2}+544-8 x \\ \\ & \Rightarrow x^{2}+75 x-60 x-544=0 \\ \\ & \Rightarrow x^{2}+15 x-544=0 \\ \\ & \Rightarrow x^{2}+32 x-17 x-544=0 \\ \\ & \Rightarrow x\left(x+32\right)-17\left(x+32\right)=0 \\ \\ & \Rightarrow\left(x-17\right)\left(x+32\right)=0 \\ \\ & \Rightarrow x=17 \text{ or } x=-32 \end{aligned} $

However, $x$ cannot be negative.

$\therefore \ \ x=17$

Therefore, originally, the number of days in which the work was completed is $17.$

Thus, required number of days $=\left(17+8\right)=25$