Chapter 09 Circles

Multiple Choice Questions (MCQs)

1 If radii of two concentric circles are $4 cm$ and $5 cm$, then length of each chord of one circle which is tangent to the other circle, is

(a) $3 cm$ $\quad$ (b) $6 cm$ $\quad$ (c) $9 cm$ $\quad$ (d) $1 cm$

Show Answer

Solution

(b) Let $O$ be the centre of two concentric circles $C_1$ and $C_2$, whose radii are $r_1=4 cm$ and $r_2=5 cm$. Now, we draw a chord $A C$ of circle $C_2$, which touches the circle $C_1$ at $B$.

Also, join $O B$, which is perpendicular to $A C$. [Tangent at any point of circle is perpendicular to radius throughly the point of contact]

Now, in right angled $\triangle O B C$, by using Pythagoras theorem,

$ O C^{2}=B C^{2}+B O^{2} $

$\Rightarrow \quad 5^{2}=B C^{2}+4^{2}$

$[\because.$ hypotenuse $.^{2}=(\text{ base })^{2}+(\text{ perpendicular })^{2}]$

$\Rightarrow \quad B C^{2}=25-16=9 \Rightarrow B C=3 cm$

$\therefore$ Length of chord $A C=2 B C=2 \times 3=6 cm$

2 In figure, if $\angle A O B=125^{\circ}$, then $\angle C O D$ is equal to

(a) $62.5^{\circ}$ $\quad$ (b) $45^{\circ}$ $\quad$ (c) $35^{\circ}$ $\quad$ (d) $55^{\circ}$

Show Answer

Solution

(d) We know that, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

i.e.,

$ \begin{aligned} \angle A O B+\angle C O D = 180^{\circ} \\ \angle C O D = 180^{\circ}-\angle A O B \\ & =180^{\circ}-125^{\circ}=55^{\circ} \end{aligned} $

$ \Rightarrow \quad \angle C O D=180^{\circ}-\angle A O B $

3 In figure, $A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$. If $A T$ is the tangent to the circle at the point $A$, then $\angle B A T$ is equal to

(a) $45^{\circ}$ $\quad$ (b) $60^{\circ}$ $\quad$ (c) $50^{\circ}$ $\quad$ (d) $55^{\circ}$

Show Answer

Solution

(c) In figure, $A O C$ is a diameter of the circle. We know that, diameter subtends an angle $90^{\circ}$ at the circle.

So,

$ \begin{aligned} \angle A B C = 90^{\circ} \\ \angle A+\angle B+\angle C = 180^{\circ} \end{aligned} $

In $\triangle A C B$,

$\Rightarrow$[since, sum of all angles of a triangle is $180^{\circ}$ ]

$\Rightarrow$ $\angle A+90^{\circ}+50^{\circ}=180^{\circ}$

$\Rightarrow$ $ \angle A+140=180 $

$ \begin{aligned} \angle A=180^{\circ}-140^{\circ} = 40^{\circ} \\ \angle A \text{ or } \angle O A B = 40^{\circ} \end{aligned} $

Now, $A T$ is the tangent to the circle at point $A$. So, $O A$ is perpendicular to $A T$.

$ \begin{aligned} & \therefore \quad \angle O A T=90^{\circ} \quad \text{ [from figure] } \\ & \Rightarrow \quad \angle O A B+\angle B A T=90^{\circ} \\ & \text{ On putting } \angle O A B=40^{\circ} \text{, we get } \\ & \Rightarrow \quad \angle B A T=90^{\circ}-40^{\circ}=50^{\circ} \end{aligned} $

4 From a point $P$ which is at a distance of $13 cm$ from the centre 0 of a circle of radius $5 cm$, the pair of tangents $P Q$ and $P R$ to the circle is drawn. Then, the area of the quadrilateral $P Q O R$ is

(a) $60 cm^{2}$ $\quad$ (b) $65 cm^{2}$ $\quad$ (c) $30 cm^{2}$ $\quad$ (d) $32.5 cm^{2}$

Show Answer

Solution

(a) Firstly, draw a circle of radius $5 cm$ having centre $O . P$ is a point at a distance of $13 cm$ from $O$. A pair of tangents $P Q$ and $P R$ are drawn.

Thus, quadrilateral $P Q O R$ is formed.

$ \begin{matrix} \because & O Q & \perp Q P & \text{ [since, } A P \text{ is a tangent line] } \\ \text{ In right angled } \triangle P Q O, & O P^{2} = O Q^{2}+Q P^{2} \\ \Rightarrow \quad & 13^{2} = 5^{2}+Q P^{2} \\ \Rightarrow \quad & Q P^{2} = 169-25=144 \\ \Rightarrow \quad & Q P = 12 cm \\ & & \\ \text{ Now, } \quad & = \dfrac{1}{2} \times 12 \times 5=30 cm^{2} \\ \therefore \quad & \text{ area of } \triangle O Q P = \dfrac{1}{2} \times Q P \times Q O \\ & & \end{matrix} $

5 At one end $A$ of a diameter $A B$ of a circle of radius $5 cm$, tangent $X A Y$ is drawn to the circle. The length of the chord CD parallel to XY and at a distance $8 cm$ from $A$, is

(a) $4 cm$ $\quad$ (b) $5 cm$ $\quad$ (c) $6 cm$ $\quad$ (d) $8 cm$

Show Answer

Solution

(d) First, draw a circle of radius $5 cm$ having centre $O$. A tangent $X Y$ is drawn at point $A$.

A chord $C D$ is drawn which is parallel to $X Y$ and at a distance of $8 cm$ from $A$. Now, $\angle O A Y=90^{\circ}$

[Tangent and any point of a circle is perpendicular to the radius through the point of contact] $\Rightarrow$ $ \triangle O A Y+\triangle O E D=180^{\circ} $

Also,

$ \triangle O E D=180^{\circ} $

Now, in right angled $\triangle O E C$,

$ A E=8 cm . \text{ Join } O C $

$\Rightarrow$ $ O C^{2}=O E^{2}+E C^{2} $

$ \begin{matrix} E C^{2} = O C^{2}-O E^{2} & {[\text{ by Pythagoras theorem }]} \\ & =5^{2}-3^{2} & \end{matrix} $

$[\because O C=$ radius $=5 cm, O E=A E-A O=8-5=3 cm]$ $=25-9=16$

$\Rightarrow$ $E C=4 cm$

Hence,

length of chord $C D=2 C E=2 \times 4=8 cm$

[since, perpendicular from centre to the chord bisects the chord]

6 In figure, AT is a tangent to the circle with centre 0 such that $0 T=4 cm$ and $\angle O T A=30^{\circ}$. Then, $A T$ is equal to

(a) $4 cm$ $\quad$ (b) $2 cm$ $\quad$ (c) $2 \sqrt{3} cm$ $\quad$ (d) $4 \sqrt{3} cm$

Show Answer

Solution

(c) Join $O A$.

We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

$\therefore$ $\angle O A T$ $=90^{\circ}$

In $\triangle O A T$, $\cos 30^{\circ}$ $=\dfrac{A T}{O T}$

$\Rightarrow$ $\dfrac{\sqrt{3}}{2}$ $=\dfrac{A T}{4}$

$\Rightarrow$ $A T$ $=2 \sqrt{3} cm$

7 In figure, if 0 is the centre of a circle, $P Q$ is a chord and the tangent $P R$ at $P$ makes an angle of $50^{\circ}$ with $PQ$, then $\angle POQ$ is equal to

(a) $100^{\circ}$ $\quad$ (b) $80^{\circ}$ $\quad$ (c) $90^{\circ}$ $\quad$ (d) $75^{\circ}$

Show Answer

Solution

(a) Given, $\angle Q P R=50^{\circ}$

We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

$\therefore$ $\angle O P R=90^{\circ}$

$\Rightarrow$ $\angle O P Q+\angle Q P R=90^{\circ}$

[from figure]

$\Rightarrow$ $\angle O P Q=90^{\circ}-50^{\circ}=40^{\circ}$

$[\because \angle Q P R=50^{\circ}]$

Now,

$O P=O Q=$ Radius of circle

$ \therefore \quad \angle O Q P=\angle O P Q=40^{\circ} $

In $\triangle O P Q$

[since, angles opposite to equal sides are equal]

[since, sum of angles of a triangle $=180^{\circ}$ ]

$\Rightarrow$ $ \angle O+\angle P+\angle Q=180^{\circ} $

$.+40^{\circ}) \quad[\because \angle P=40^{\circ}=\angle Q]$

$ \begin{aligned} \angle O = 180^{\circ}-(40^{\circ}+40^{\circ}) \\ & =180^{\circ}-80^{\circ}=100^{\circ} \end{aligned} $

8 In figure, if $P A$ and $P B$ are tangents to the circle with centre 0 such that $\angle A P B=50^{\circ}$, then $\angle O A B$ is equal to

(a) $25^{\circ}$ $\quad$ (b) $30^{\circ}$ $\quad$ (c) $40^{\circ}$ $\quad$ (d) $50^{\circ}$

Show Answer

Solution

(a) Given, $P A$ and $P B$ are tangent lines.

[since, tangent at any point of a circle is perpendicular to the radius through the point of contact]

$ \begin{matrix} \therefore & \angle P A O = 90^{\circ} \\ \Rightarrow & \angle P A B+\angle B A O = 90^{\circ} \\ \Rightarrow & 65^{\circ}+\angle B A O = 90^{\circ} \\ \Rightarrow & \angle B A O = 90^{\circ}-65^{\circ}=25^{\circ} \end{matrix} $

9 If two tangents inclined at an angle $60^{\circ}$ are drawn to a circle of radius $3 cm$, then the length of each tangent is

(a) $\dfrac{3}{2} \sqrt{3} cm$ $\quad$ (b) $6 cm$ $\quad$ (c) $3 cm$ $\quad$ (d) $3 \sqrt{3} cm$

Show Answer

Solution

(d) Let $P$ be an external point and a pair of tangents is drawn from point $P$ and angle between these two tangents is $60^{\circ}$.

Join $O A$ and $O P$.

Also, $O P$ is a bisector line of $\angle A P C$.

$ \begin{matrix} \therefore & \angle A P O=\angle C P O=30^{\circ} \\ \text{ Also, } & O A \perp A P \end{matrix} $

Tangent at any point of a circle is perpendicular to the radius through the point of contact.

In right angled $\triangle O A P$,

$ \begin{aligned} \tan 30^{\circ} = \dfrac{O A}{A P}=\dfrac{3}{A P} \\ \dfrac{1}{\sqrt{3}} = \dfrac{3}{A P} \\ A P = 3 \sqrt{3} cm \end{aligned} $

$ \Rightarrow \quad \dfrac{1}{\sqrt{3}}=\dfrac{3}{A P} $

$\Rightarrow$ Hence, the length of each tangent is $3 \sqrt{3} cm$.

10 In figure, if $P Q R$ is the tangent to a circle at $Q$ whose centre is $0, A B$ is a chord parallel to $P R$ and $\angle B Q R=70^{\circ}$, then $\angle A Q B$ is equal to

(a) $20^{\circ}$ $\quad$ (b) $40^{\circ}$ $\quad$ (c) $35^{\circ}$ $\quad$ (d) $45^{\circ}$

Show Answer

Solution

(b) Given, $A B | P R$

Very Short Answer Type Questions

1 If a chord $A B$ subtends an angle of $60^{\circ}$ at the centre of a circle, then angle between the tangents at $A$ and $B$ is also $60^{\circ}$.

Show Answer

Solution

False

Since a chord $A B$ subtends an angle of $60^{\circ}$ at the centre of a circle.

i.e.,

$\angle A O B=60^{\circ}$

As $\quad O A=O B=$ Radius of the circle

$\therefore \quad \angle O A B=\angle O B A=60^{\circ}$

The tangent at points $A$ and $B$ is drawn, which intersect at $C$.

We know, $O A \perp A C$ and $O B \perp B C$.

$\therefore \quad \angle O A C=90^{\circ}, \angle O B C=90^{\circ}$

$\Rightarrow \quad \angle O A B+\angle B A C=90^{\circ}$

and $\quad \angle O B A+\angle A B C=90^{\circ}$

$\Rightarrow \quad \angle B A C=90^{\circ}-60^{\circ}=30^{\circ}$

and $\quad \angle A B C=90^{\circ}-60^{\circ}=30^{\circ}$

In $\triangle A B C, \quad \angle B A C+\angle C B A+\angle A C B=180^{\circ}$

$\Rightarrow \quad \angle A C B=180^{\circ}-(30^{\circ}+30^{\circ})=120^{\circ}$

2 The length of tangent from an external point $P$ on a circle is always greater than the radius of the circle.

Show Answer

Solution

False

Because the length of tangent from an external point $P$ on a circle may or may not be greater than the radius of the circle.

3 The length of tangent from an external point $P$ on a circle with centre 0 is always less than OP.

Show Answer

Solution

True

$P T$ is a tangent drawn from external point $P$. Join $O T$.

$\because \quad O T \perp P T$

So, OPT is a right angled triangle formed.

In right angled triangle, hypotenuse is always greater than any of the two sides of the triangle. $\therefore$ or $O P>P T$ $P T<O P$

4 The angle between two tangents to a circle may be $0^{\circ}$.

Show Answer

Solution

True

This may be possible only when both tangent lines coincide or are parallel to each other.

5 If angle between two tangents drawn from a point $P$ to a circle of radius a and centre 0 is $90^{\circ}$, then $O P=a \sqrt{2}$.

Show Answer

Solution

True

From point $P$, two tangents are drawn.

Given,

$O T=a$

Also, line $O P$ bisects the $\angle R P T$.

$\therefore$ Also,

In right angled $\triangle O T P$,

$\angle T P O=\angle R P O=45^{\circ}$

$O T \perp P T$

$\Rightarrow \quad \dfrac{1}{\sqrt{2}}=\dfrac{a}{O P} \Rightarrow O P=a \sqrt{2}$

6 If angle between two tangents drawn from a point $P$ to $\boldsymbol{{}a}$ circle of radius a and centre 0 is $60^{\circ}$, then $OP=a \sqrt{3}$.

Show Answer

Solution

False

From point $P$, two tangents are drawn.

Given,

$ O T=a $

Also, line $O P$ bisects the $\angle R P T$.

$ \begin{matrix} \therefore & \angle T P O=\angle R P O=30^{\circ} \\ \text{ Also, } & O T \perp P T \end{matrix} $

In right angled $\triangle O T P$,

$ \begin{matrix}& \sin 30^{\circ} = \dfrac{O T}{O P} \\ \Rightarrow & \dfrac{1}{2} = \dfrac{a}{O P} \\ \Rightarrow & O P = 2 a \end{matrix} $

7 The tangent to the circumcircle of an isosceles $\triangle A B C$ at $A$, in which $A B=A C$, is parallel to $B C$.

Show Answer

Solution

True

Let $E A F$ be tangent to the circumcircle of $\triangle A B C$.

To prove

Here,

$\Rightarrow$ $E A F | B C$ $ \angle E A B=\angle A B C $

$ A B=A C $

$ \angle A B C=\angle A C B $

[angle between tangent and is chord equal to angle made by chord in the alternate segment] $\therefore$ Also, $\quad \angle E A B=\angle B C A$

From Eqs. (i) and (ii), we get

$\Rightarrow \quad E A F | B C$

8 If a number of circles touch a given line segment $P Q$ at a point $A$, then their centres lie on the perpendicular bisector of $P Q$.

Show Answer

Solution

False

Given that $P Q$ is any line segment and $S_1, S_2, S_3, S_4, \ldots$ circles are touch a line segment $P Q$ at a point $A$. Let the centres of the circles $S_1, S_2, S_3, S_4, \ldots$ be $C_1, C_2, C_3, C_4, \ldots$ respectively.

To prove Centres of these circles lie on the perpendicular bisector of $P Q$.

Now, joining each centre of the circles to the point $A$ on the line segment $P Q$ by a line segment i.e., $C_1 A, C_2 A, C_3 A, C_4 A$,… so on.

We know that, if we draw a line from the centre of a circle to its tangent line, then the line is always perpendicular to the tangent line. But it not bisect the line segment $P Q$.

So,

$C_1 A \perp P Q$ $[.$ for $.S_1]$
$C_2 A \perp P Q$ $[.$ for $.S_2]$
$C_3 A \perp P Q$ $[.$ for $.S_3]$
$C_4 A \perp P Q$ $[.$ for $.S_4]$
$\ldots$ so on.

Since, each circle is passing through a point $A$. Therefore, all the line segments $C_1 A, C_2 A, C_3 A, C_4 A, \ldots$, so on are coincident.

So, centre of each circle lies on the perpendicular line of $P Q$ but they do not lie on the perpendicular bisector of $P Q$.

Hence, a number of circles touch a given line segment $P Q$ at a point $A$, then their centres lie

9 If a number of circles pass through the end points $P$ and $Q$ of a line segment $PQ$, then their centres lie on the perpendicular bisector of $PQ$.

Show Answer

Solution

True

We draw two circle with centres $C_1$ and $C_2$ passing through the end points $P$ and $Q$ of a line segment $P Q$. We know, that perpendicular bisectors of a chord of a circle always passes through the centre of circle.

Thus, perpendicular bisector of $P Q$ passes through $C_1$ and $C_2$. Similarly, all the circle passing through $P Q$ will have their centre on perpendiculars bisectors of $P Q$.

10. $ AB$ is a diameter of a circle and $A C$ is its chord such that $\angle B A C=30^{\circ}$. If the tangent at $C$ intersects $A B$ extended at $D$, then $B C=B D$.

Show Answer

Solution

True

To Prove, $B C=B D$

Join $B C$ and $O C$.

Given,

$\Rightarrow$ $\angle B A C=30^{\circ}$

$\angle B C D=30^{\circ}$

[angle between tangent and chord is equal to angle made by chord in the alternate

$ \begin{aligned} & \therefore \quad \angle A C D=\angle A C O+\angle O C D=30^{\circ}+90^{\circ}=120^{\circ} \\ & {[\because O C \perp C D \text{ and } O A=O C=\text{ radius } \Rightarrow \angle O A C=\angle O C A=30^{\circ}]} \\ & \text{ In } \triangle A C D \\ & \angle C A D+\angle A C D+\angle A D C=180^{\circ} \\ & \Rightarrow \quad 30^{\circ}+120^{\circ}+\angle A D C=180^{\circ} \\ & \Rightarrow \quad \angle A D C=180^{\circ}-(30^{\circ}+120^{\circ})=30^{\circ} \\ & \text{ Now, in } \triangle B C D \\ & \angle B C D=\angle B D C=30^{\circ} \\ & B C=B D \end{aligned} $

[since, sides opposite to equal angles are equal]

Short Answer Type Questions

1 Out of the two concentric circles, the radius of the outer circle is $5 cm$ and the chord $AC$ of length $8 cm$ is a tangent to the inner circle. Find the radius of the inner circle.

Show Answer

Solution

Let $C_1$ and $C_2$ be the two circles having same centre $O$. $A C$ is a chord which touches the $C_1$ at point $D$.

2 Two tangents $P Q$ and $P R$ are drawn from an external point to a circle with centre 0 . Prove that $\mathbf{Q O R P}$ is a cyclic quadrilateral.

Show Answer

Solution

Given Two tangents $P Q$ and $P R$ are drawn from an external point to a circle with centre $O$.

To prove $Q O R P$ is a cyclic quadrilateral. proof Since, $P R$ and $P Q$ are tangents.

So,

$O R \perp P R$ and $O Q \perp P Q$

[since, if we drawn a line from centre of a circle to its tangent line. Then, the line always

$ \begin{matrix} \therefore & \angle O R P=\angle O Q P=90^{\circ} \\ \text{ Hence, } & \angle O R P+\angle O Q P=180^{\circ} \end{matrix} $

perpendicular to the tangent line]

So, QOPR is cyclic quadrilateral.

[If sum of opposite angles is quadrilateral in $180^{\circ}$, then the quadrilateral is cyclic]

Hence proved.

3 Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Show Answer

Solution

Given Two tangents $P Q$ and $P R$ are drawn from an external point $P$ to a circle with centre $O$.

To prove Centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

In $\angle R P Q$.

Construction Join $O R$, and $O Q$.

In $\triangle P O R$ and $\triangle P O Q$

$ \angle P R O=\angle P Q O=90^{\circ} $

[tangent at any point of a circle is perpendicular to the radius through the point of contact]

$ O R=O Q $

[radii of some circle]

Since, $O P$ is common. $\therefore$ $\triangle P R O \cong \triangle P Q O$ Hence, $\angle R P O=\angle Q P O$

[RHS]

[by $CPCT]$

Thus, $O$ lies on angle bisecter of $P R$ and $P Q$.

Hence proved.

4 If from an external point $B$ of a circle with centre 0 , two tangents $B C$ and $B D$ are drawn such that $\angle D B C=120^{\circ}$, prove that $B C+B D=B 0$ i.e., $BO=2 BC$.

Show Answer

Solution

Two tangents $B D$ and $B C$ are drawn from an external point $B$.

To prove

Given,

Join $O C, O D$ and $B O$.

Since, $B C$ and $B D$ are tangents.

$\therefore \quad O C \perp B C$ and $O D \perp B D$

We know, $O B$ is a angle bisector of $\angle D B C$.

$\therefore \quad \angle O B C=\angle D B O=60^{\circ}$

In right angled $\triangle O B C$,

$\cos 60^{\circ}=\dfrac{B C}{O B}$

$\Rightarrow \quad \dfrac{1}{2}=\dfrac{B C}{O B}$

$\Rightarrow \quad O B=2 B C$

Also, $\quad B C=B D$

[tangent drawn from internal point to circle are equal]

$\therefore \quad O B=B C+B C$

$\Rightarrow \quad O B=B C+B D$

5 In figure, $A B$ and $C D$ are common tangents to two circles of unequal radii.

Prove that $A B=C D$

Show Answer

Solution

Given $A B$ and $C D$ are common tangent to two circles of unequal radius To prove $A B=C D$

Construction Produce $A B$ and $C D$, to intersect at $P$.

Proof $\quad P A=P C$

[the length of tangents drawn from an internal point to a circle are equal]

Also,

$ P B=P D $

[the lengths of tangents drawn from an internal point to a circle are equal]

$ \therefore \quad P A-P B=P C-P D $

$ A B=C D $

Hence proved.

6 In figure, $A B$ and $C D$ are common tangents to two circles of equal radii. Prove that $A B=C D$.

Show Answer

Solution

Given $A B$ and $C D$ are tangents to two circles of equal radii. To prove

$A B=C D$

Construction Join $O A, O C, O^{\prime} B$ and $O^{\prime} D$

Proof Now, $\angle O A B=90^{\circ}$

[tangent at any point of a circle is perpendicular to radius through the point of contact] Thus, $A C$ is a straight line.

Also,

$\therefore$

Similarly, $B D$ is a straight line and

Also,

In quadrilateral $A B C D$, and $A B C D$ is a rectangle Hence,

$ \begin{gathered} \angle O A B+\angle O C D=180^{\circ} \\ A B | C D \end{gathered} $

$ \begin{aligned} \angle O^{\prime} B A = \angle O^{\prime} D C=90^{\circ} \\ A C = B D \quad \text{ [radii of two circles are equal] } \\ \angle A = \angle B=\angle C=\angle D=90^{\circ} \\ A C = B D \end{aligned} $

$A B=C D \quad$ [opposite sides of rectangle are equal]

7 In figure, common tangents $A B$ and $C D$ to two circles intersect at $E$. Prove that $A B=C D$.

Show Answer

Solution

Given Common tangents $A B$ and $C D$ to two circles intersecting at $E$.

To prove $A$

$B=C D$

Proof

$$ \begin{equation*} E A=E C \tag{i} \end{equation*} $$

[the lengths of tangents drawn from an internal point to a circle are equal]

$$ \begin{equation*} E B=E D \tag{ii} \end{equation*} $$

On adding Eqs. (i) and (ii), we get

$ \begin{aligned} E A+E B = E C+E D \\ A B = C D \end{aligned} $

Hence proved.

8 A chord $P Q$ of a circle is parallel to the tangent drawn at a point $R$ of the circle. Prove that $R$ bisects the arc PRQ.

Show Answer

Solution

Given Chord $P Q$ is parallel to tangent at $R$.

To prove $R$ bisects the arc $P R Q$

Proof $\angle 1=\angle 2$ [alternate interior angles]

$\angle 1=\angle 3$

[angle between tangent and chord is equal to angle made by chord in alternate segment]

$ \begin{matrix} \therefore & \angle 2=\angle 3 \\ \Rightarrow & P R=Q R \\ \Rightarrow & P R=Q R \end{matrix} $

9 Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

Show Answer

Solution

To prove $\angle 1=\angle 2$, let $P Q$ be a chord of the circle. Tangents are drawn at the points $R$ and Q.

Let $P$ be another point on the circle, then, join $P Q$ and $P R$.

Since, at point $Q$, there is a tangent.

$\therefore \quad \angle 2=\angle P \quad$ [angles in alternate segments are equal]

Since, at point $R$, there is a tangent.

$\therefore \quad \angle 1=\angle P \quad$ [angles in alternate segments are equal]

$\therefore \quad \angle 1=\angle 2=\angle P$

Hence proved.

10 Prove that a diameter $A B$ of a circle bisects all those chords which are parallel to the tangent at the point $A$.

Show Answer

Solution

Given, $A B$ is a diameter of the circle.

A tangent is drawn from point $A$. Draw a chord $C D$ parallel to the tangent MAN.

So, $C D$ is a chord of the circle and $O A$ is a radius of the circle.

$\angle M A O=90^{\circ}$

[tangent at any point of a circle is perpendicular to the radius through the point of contact] $\angle C E O=\angle M A O$ $\angle C E O=90^{\circ}$

[corresponding angles]

$\therefore$

Thus, $O E$ bisects $C D, \quad$ [perpendicular from centre of circle to chord bisects the chord] Similarly, the diameter $A B$ bisects all. Chords which are parallel to the tangent at the point $A$.

Long Answer Type Questions

1 If a hexagon $A B C D E F$ circumscribe a circle, prove that

$AB+CD+EF=BC+DE+FA$

Show Answer

Solution

Given $A$ hexagon $A B C D E F$ circumscribe a circle.

To prove $A B+C D+E F=B C+D E+F A$

Proof $A B+C D+E F=(A Q+Q B)+(C S+S D)+(E U+U F)$

$=A P+B R+C R+D T+E T+F P$

$=(A P+F P)+(B R+C R)+(D T+E T)$

$ \begin{aligned} A B+C D+E F = A F+B C+D E \\ A Q = A P \\ Q B = B R \\ C S = C R \\ D S = D T \\ E U = E T \end{aligned} $

[tangents drawn from an external point to a circle are equal]

Hence proved.

2 Let $s$ denotes the semi-perimeter of a $\triangle A B C$ in which $B C=a, C A=b$ and $A B=c$. If a circle touches the sides $B C, C A, A B$ at $D, E, F$, respectively. Prove that $B D=s-b$.

Show Answer

Solution

A circle is inscribed in the $\triangle A B C$, which touches the $B C, C A$ and $A B$.

Given,

$ B C=a, C A=b \text{ and } A B=c $

By using the property, tangents are drawn from an external point to the circle are equal in length.

$ \begin{aligned} & \therefore \quad B D=B F=x \quad \text{ [say] } \\ & \text{ ond } \\ & \text{ Now, } \quad B C+C A+A B=a+b+c \\ & \Rightarrow \quad(B D+D C)+(C E+E A)+(A F+F B)=a+b+c \\ & \Rightarrow \quad(x+y)+(y+z)+(z+x)=a+b+c \\ & \Rightarrow \quad 2(x+y+z)=2 s \\ & \Rightarrow \quad s=x+y+z \\ & \Rightarrow \quad x=s-(y+z) \\ & \Rightarrow \quad B D=s-b \quad[\because b=A E+E C=z+y] \end{aligned} $

3 From an external point $P$, two tangents, $P A$ and $P B$ are drawn to a circle with centre 0 . At one point $E$ on the circle tangent is drawn which intersects $P A$ and $P B$ at $C$ and $D$, respectively. If $P A=10 cm$, find the perimeter of the trianlge PCD.

Show Answer

Solution

Two tangents $P A$ and $P B$ are drawn to a circle with centre $O$ from an external point $P$.

4 If $A B$ is a chord of a circle with centre $0, A O C$ is a diameter and $A T$ is the tangent at $A$ as shown in figure. Prove that $\angle B A T=\angle A C B$.

Show Answer

Solution

Since, $A C$ is a diameter line, so angle in semi-circle makes an angle $90^{\circ}$. $\therefore$ In $\triangle A B C$, $\angle A B C=90^{\circ}$ $\angle C A B+\angle A B C+\angle A C B=180^{\circ}$ [by property]

$[\because.$ sum of all interior angles of any triangle is $.180^{\circ}]$

$\Rightarrow \quad \angle C A B+\angle A C B=180^{\circ}-90^{\circ}=90^{\circ}$

Since, diameter of a circle is perpendicular to the tangent.

i.e.

$\therefore$ $C A \perp A T$

$\angle C A T=90^{\circ}$

$\Rightarrow$ $\angle C A B+\angle B A T=90^{\circ}$

From Eqs. (i) and (ii),

$ \begin{aligned} \Rightarrow & \angle C A B+\angle A C B = \angle C A B+\angle B A T \\ \angle A C B = \angle B A T \end{aligned} $

Hence proved.

5 Two circles with centres 0 and $0^{\prime}$ of radii $3 cm$ and $4 cm$, respectively intersect at two points $P$ and $Q$, such that $O P$ and $O^{\prime} P$ are tangents to the two circles. Find the length of the common chord PQ.

Show Answer

Solution

Here, two circles are of radii $O P=3 cm$ and $P O^{\prime}=4 cm$.

These two circles intersect at $P$ and $Q$.

Here, $O P$ and $P O^{\prime}$ are two tangents drawn at point $P$.

$ \angle O P O^{\prime}=90^{\circ} $

[tangent at any point of circle is perpendicular to radius through the point of contact]

Join $O O^{\prime}$ and $P N$.

In right angled $\triangle O P O^{\prime}$,

$ \begin{aligned} & (O O^{\prime})^{2}=(O P)^{2}+(P O^{\prime})^{2} \quad \text{ [by Pythagoras theorem] } \\ & \text{ i.e., } \quad(\text{ Hypotenuse })^{2}=(\text{ Base })^{2}+(\text{ Perpendicular })^{2} \\ & =(3)^{2}+(4)^{2}=25 \\ & \Rightarrow \quad O O^{\prime}=5 cm \\ & \text{ Also, } \quad P N \perp O O^{\prime} \end{aligned} $

$ (O P)^{2}=(O N)^{2}+(N P)^{2} \quad[\text{ by Pythagoras theorem }] $

$$ \begin{equation*} \Rightarrow \quad(N P)^{2}=3^{2}-x^{2}=9-x^{2} \tag{i} \end{equation*} $$

and in right angled $\triangle P N O^{\prime}$,

$ \begin{aligned} & (P O^{\prime})^{2}=(P N)^{2}+(N O^{\prime})^{2} \quad[\text{ by Pythagoras theorem }] \\ & \Rightarrow \quad(4)^{2}=(P N)^{2}+(5-x)^{2} \\ & \Rightarrow \quad(P N)^{2}=16-(5-x)^{2} \end{aligned} $

From Eqs. (i) and (ii),

$ 9-x^{2}=16-(5-x)^{2} $

$\Rightarrow \quad 7+x^{2}-(25+x^{2}-10 x)=0$

$ \Rightarrow \quad 10 x=18 $

$ \therefore \quad x=1.8 $

Again, in right angled $\triangle O P N$,

$ \begin{matrix} \Rightarrow & 3^{2}=(1.8)^{2}+(N P)^{2} \\ \Rightarrow & (N P)^{2} = 9-3.24=5.76 \\ \therefore & (N P) = 2.4 \\ \therefore \text{ Length of common chord, } & P Q = 2 P N=2 \times 2.4=4.8 cm \end{matrix} $

[by Pythagoras theorem]

6 In a right angle $\triangle A B C$ is which $\angle B=90^{\circ}$, a circle is drawn with $A B$ as diameter intersecting the hypotenuse $A C$ at $P$. Prove that the tangent to the circle at $P Q$ bisects $B C$.

Show Answer

Solution

Let $O$ be the centre of the given circle. Suppose, the tangent at $P$ meets $B C$ at $Q$. Join $B P$.

Proof

[tangent at any point of circle is perpendicular to radius through the point of contact]

$\therefore \ln \triangle A B C, \quad \begin{aligned} \angle 1+\angle 5 = 90^{\circ} \\ \angle 3 = \angle 1\end{aligned} \quad$ [angle sum property, $\angle A B C=90^{\circ}$ ]

[angle between tangent and the chord equals angle made by the chord in alternate segment]

$\therefore$ $\angle 3+\angle 5=90^{\circ}$ $\ldots$ (i)

Also, $\angle A P B=90^{\circ}$ [angle in semi-circle]

$\Rightarrow$ $\angle 3+\angle 4=90^{\circ}$ $[\angle A P B+\angle B P C=180^{\circ}.$, linear pair]

From Eqs. (i) and (ii), we get

$\Rightarrow$ $\angle 3+\angle 5=\angle 3+\angle 4$

$\Rightarrow$ $\angle 5=\angle 4$

Also, $P Q=Q C$ [sides opposite to equal angles are equal]

$\Rightarrow$ $Q P=Q B$

$\Rightarrow$ $[$ tangents drawn from an internal point to a circle are equal]

$Q B=Q C$

7 In figure, tangents $P Q$ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord RS is drawn parallel to the tangent $P Q$. Find the $\angle R Q S$.

Show Answer

Solution

$P Q$ and $P R$ are two tangents drawn from an external point $P$.

$\therefore \quad P Q=P R$

[the lengths of tangents drawn from an external point to a circle are equal]

$\Rightarrow$ $\angle P Q R=\angle Q R P$

[angles opposite to equal sides are equal]

Now, in $\triangle P Q R \quad \angle P Q R+\angle Q R P+\angle R P Q=180^{\circ}$

[sum of all interior angles of any triangle is $180^{\circ}$ ]

$\Rightarrow \quad \angle P Q R+\angle P Q R+30^{\circ}=180^{\circ}$

$\Rightarrow \quad 2 \angle P Q R=180^{\circ}-30^{\circ}$

$\Rightarrow \quad \angle P Q R=\dfrac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$

Since, $\quad S R | Q P$

$\therefore \quad \angle S R Q=\angle R Q P=75^{\circ} \quad$ [alternate interior angles]

Also, $\quad \angle P Q R=\angle Q S R=75^{\circ} \quad$ [by alternate segment theorem]

In $\triangle Q R S, \quad \angle Q+\angle R+\angle S=180^{\circ}$

[sum of all interior angles of any triangle is $180^{\circ}$ ]

$ \begin{matrix} \Rightarrow & \angle Q = 180^{\circ}-(75^{\circ}+75^{\circ}) \\ & =30^{\circ} \\ \therefore & \angle R Q S = 30^{\circ} \end{matrix} $

8. $ A B$ is a diameter and $A C$ is a chord of a circle with centre 0 such that $\angle B A C=30^{\circ}$. The tangent at $C$ intersects extended $A B$ at a point $D$. Prove that $BC=BD$.

Show Answer

Solution

A circle is drawn with centre $O$ and $A B$ is a diameter.

$A C$ is a chord such that $\angle B A C=30^{\circ}$.

Given $A B$ is $\alpha$ diameter and $A C$ is a chord of circle with certre $O, \angle B A C=30^{\circ}$.

To prove

$\ln \triangle A B C$,

$ \begin{aligned} & \angle A+\angle B+\angle C=180^{\circ} \\ & 30^{\circ}+\angle B+90^{\circ}=180^{\circ} \\ & \Rightarrow \\ & \text{ Also, } \\ & \Rightarrow \\ & \angle C B A+\angle C B D=180^{\circ} \\ & \angle C B D=180^{\circ}-60^{\circ}-120^{\circ} \\ & {[\because \angle C B A=60^{\circ}]} \\ & \Rightarrow \quad 120^{\circ}+\angle B D C+30^{\circ}=180^{\circ} \\ & \Rightarrow \quad \angle B D C=30^{\circ} \\ & \text{ From Eqs. (i) and (ii), } \\ & \angle B C D=\angle B D C \\ & B C=B D \end{aligned} $

9 Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

Show Answer

Solution

Let mid-point of an $arc A M B$ be $M$ and $T M T^{\prime}$ be the tangent to the circle.

Join $A B, A M$ and $M B$.

Since,

$ \begin{aligned} arc A M = arc M B \\ \text{ Chord } A M = \text{ Chord } M B \\ A M = M B \\ \angle M A B = \angle M B A \end{aligned} $

$\Rightarrow$ In $\triangle A M B$,

$\Rightarrow$ [equal sides corresponding to the equal angle] …(i)

Since, $T M T^{\prime}$ is a tangent line. $\therefore$ $\angle A M T=\angle M B A$ [angles in alternate segments are equal] $=\angle M A B$ [from Eq. (i)]

But $\angle A M T$ and $\angle M A B$ are alternate angles, which is possible only when

$A B | T M T^{\prime}$

Hence, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

Hence proved.

10 In a figure the common tangents, $A B$ and $C D$ to two circles with centres 0 and $0^{\prime}$ intersect at $E$. Prove that the points $O, E$ and $O^{\prime}$ are collinear.

Show Answer

Solution

Joint $A O, O C$ and $O^{\prime} D, O^{\prime} B$. Now, in $\triangle E O^{\prime} D$ and $\triangle E O^{\prime} B$,

$$ \begin{align*} O^{\prime} D = O^{\prime} B \tag{radius}\\ O^{\prime} E = O^{\prime} E \tag{commonside}\\ E D = E B \end{align*} $$

[since, tangents drawn from an external point to the circle are equal in length]

$ \begin{aligned} & \therefore \quad \triangle E O^{\prime} D \cong \triangle E O^{\prime} B \quad \text{ [by SSS congruence rule] } \\ & \Rightarrow \quad \angle O^{\prime} E D=\angle O^{\prime} E B \end{aligned} $

$O^{\prime} E$ is the angle bisector of $\angle D E B$.

Similarly, $O E$ is the angle bisector of $\angle A E C$.

Now, in quadrilateral $D E B O^{\prime}$,

$ \angle O^{\prime} D E=\angle O^{\prime} B E=90^{\circ} $

$ \Rightarrow \quad \angle O^{\prime} D E+\angle O^{\prime} B E=180^{\circ} $

$\therefore \quad \angle D E B+\angle D O^{\prime} B=180^{\circ}$ [since, $D E B O^{\prime}$ is cyclic quadrilateral] … (ii)

Since, $A B$ is a straight line.

$ \begin{aligned} & \therefore \quad \angle A E D+\angle D E B=180^{\circ} \\ & \Rightarrow \quad \angle A E D+180^{\circ}-\angle D O^{\prime} B=180^{\circ} \\ & \Rightarrow \\ & \angle A E D=\angle D O^{\prime} B \\ & \angle A E D=\angle A O C \\ & \angle D E B=180^{\circ}-\angle D O^{\prime} B \end{aligned} $

Divided by 2 on both sides, we get

$$ \begin{align*} \Rightarrow \dfrac{1}{2} \angle D E B = 90^{\circ}-\dfrac{1}{2} \angle D O^{\prime} B \\ \angle D E O^{\prime} = 90^{\circ}-\dfrac{1}{2} \angle D O^{\prime} B \tag{v} \end{align*} $$

[since, $O^{\prime} E$ is the angle bisector of $\angle D E B$ i.e., $\dfrac{1}{2} \angle D E B=\angle D E O^{\prime}$ ]

Similarly,

$ \angle A E C=180^{\circ}-\angle A O C $

Divided by 2 on both sides, we get

$$ \begin{matrix} \Rightarrow & \dfrac{1}{2} \angle A E C=90^{\circ}-\dfrac{1}{2} \angle A O C \\ \Rightarrow \quad \angle A E O=90^{\circ}-\dfrac{1}{2} \angle A O C \tag{vi} \end{matrix} $$

[since, $O E$ is the angle bisector of $\angle A E C$ i.e., $\dfrac{1}{2} \angle A E C=\angle A E O$ ]

Now, $\angle A E D+\angle D E O^{\prime}+\angle A E O=\angle A E D+90^{\circ}-\dfrac{1}{2} \angle D O^{\prime} B+90^{\circ}-\dfrac{1}{2} \angle A O C$

$ \begin{aligned} & =\angle A E D+180^{\circ}-\dfrac{1}{2}(\angle D O^{\prime} B+\angle A O C) \\ & =\angle A E D+180^{\circ}-\dfrac{1}{2}(\angle A E D+\angle A E D) \quad[\text{ from Eqs. (iii) and (iv) }] \\ & =\angle A E D+180^{\circ}-\dfrac{1}{2}(2 \times \angle A E D) \\ & =\angle A E D+180^{\circ}-\angle A E D=180^{\circ} \end{aligned} $

$ \therefore \quad \angle A E O+\angle A E D+\angle D E O^{\prime}=180^{\circ} $

So, $O E O$ ’ is straight line.

Hence, $O, E$ and $O^{\prime}$ are collinear.

Hence proved.

11 In figure, 0 is the centre of a circle of radius $5 cm, T$ is a point such that $O T=13$ and $O T$ intersects the circle at $E$, if $A B$ is the tangent to the circle at $E$, find the length of $A B$.

Show Answer

Solution

Given, $O T=13 cm$ and $O P=5 cm$

Since, if we drawn a line from the centre to the tangent of the circle. It is always perpendicular to the tangent i.e., $O P \perp P T$.

In right angled $\triangle O P T, \quad O T^{2}=O P^{2}+P T^{2}$

$ \begin{matrix} \Rightarrow & P T^{2}=(13)^{2}-(5)^{2}=169-25=144 \\ \Rightarrow & P T=12 cm \end{matrix} $

$\therefore$
$\therefore$ $P A=A E$ and $Q B=E B$
$O T=13 cm$ …(iii)

$\therefore$ $E T=O T-O E$ $[\therefore O E=5 cm=$ radius $]$

$\Rightarrow$ $E T=13-5$

$ [\text{ by Pythagoras theorem, }(\text{ hypotenuse })^{2}=(\text{ base })^{2}+(\text{ perpendicular })^{2}] $

Since, the length of pair of tangents from an external point $T$ is equal.

$$ \begin{matrix} \therefore & Q T=12 cm \\ \text{ Now, } & T A=P T-P A \\ \Rightarrow & T A=12-P A \\ \text{ and } & T B=Q T-Q B \\ \Rightarrow & T B=12-Q B \tag{ii} \end{matrix} $$

Again, using the property, length of pair of tangents from an external point is equal.

Since, $A B$ is a tangent and $O E$ is the radius.

$ \therefore $

$\Rightarrow \quad \angle O E A=90^{\circ}$

$\therefore \quad \angle A E T=180^{\circ}-\angle O E A$

$\Rightarrow$ $ \angle A E T=90^{\circ} $

Now, in right angled $\triangle A E T$,

$ (A T)^{2}=(A E)^{2}+(E T)^{2} \quad[\text{ by Pythagoras theorem }] $

$ \begin{matrix} \Rightarrow & (P T-P A)^{2}=(A E)^{2}+(8)^{2} & \\ \Rightarrow & (12-P A)^{2}=(P A)^{2}+(8)^{2} & \text{ [from Eq. (iii)] } \\ \Rightarrow & 144+(P A)^{2}-24 \cdot P A=(P A)^{2}+64 & \\ \Rightarrow & 24 \cdot P A=80 & \\ \Rightarrow & P A=\dfrac{10}{3} cm & \\ \therefore & A E=\dfrac{10}{3} cm & \text{ [from Eq. (iii)] } \end{matrix} $

Join OQ.

Similarly

$ \begin{aligned} B E = \dfrac{10}{3} cm \\ A B = A E+E B \\ & =\dfrac{10}{3}+\dfrac{10}{3} \\ & =\dfrac{20}{3} cm \end{aligned} $

Hence,

[linear pair]

[from Eq. (iii)]

Hence,the required length $A B$ is $\dfrac{20}{3} cm$.

12 The tangent at a point $C$ of a circle and a diameter $A B$ when extended intersect at $P$. If $\angle P C A=110^{\circ}$, find $\angle C B A$.

Show Answer

Solution

Here, $A B$ is a diameter of the circle from point $C$ and a tangent is drawn which meets at a point $P$.

Join OC. Here, OC is radius.

Since, tangent at any point of a circle is perpendicular to the radius through point of contact circle.

Now

$ \begin{gathered} O C \perp P C \\ \angle P C A=110^{\circ} \end{gathered} $

$ \begin{aligned} \Rightarrow & \angle P C O+\angle O C A = 110^{\circ} \\ \Rightarrow & 90^{\circ}+\angle O C A = 110^{\circ} \\ \Rightarrow & \angle O C A = 20^{\circ} \\ \therefore & O C = O A=\text{ Radius of circle } \\ \Rightarrow & \angle O C A = \angle O A C=20^{\circ} \end{aligned} $

[since, two sides are equal, then their opposite angles are equal]

Since, $P C$ is a tangent, so

$ \angle B C P=\angle C A B=20^{\circ} $

[angles in a alternate segment are equal]

In $\triangle P B C, \quad \angle P+\angle C+\angle A=180^{\circ}$

$ \begin{aligned} \angle P = 180^{\circ}-(\angle C+\angle A) \\ & =180^{\circ}-(110^{\circ}+20^{\circ}) \\ & =180^{\circ}-130^{\circ}=50^{\circ} \end{aligned} $

$\ln \triangle P B C$

$\angle B P C+\angle P C B+\angle P B C=180^{\circ}$

$\Rightarrow \quad 50^{\circ}+20^{\circ}+\angle P B C=180^{\circ}$

$\Rightarrow \quad \angle P B C=180^{\circ}-70^{\circ}$

$\Rightarrow \quad \angle P B C=110^{\circ}$

Since, $A P B$ is a straight line.

$ \begin{aligned} & \therefore \quad \angle P B C+\angle C B A=180^{\circ} \\ & \Rightarrow \quad \angle C B A=180^{\circ}-110^{\circ}=70^{\circ} \end{aligned} $

13 If an isosceles $\triangle A B C$ in which $A B=A C=6 cm$, is inscribed in a circle of radius $9 cm$, find the area of the triangle.

Show Answer

Solution

In a circle, $\triangle A B C$ is inscribed.

Join $O B, O C$ and $O A$.

Conside $\triangle A B O$ and $\triangle A C O$

$ \begin{aligned} & A B=A C \quad \text{[given]}\\ & B O=C O \quad \text{[radii of same circle]} \end{aligned} $

$A O$ is common. $\therefore$ $\triangle A B O \cong \triangle A C O$

$\therefore$ $\triangle A M B \cong \triangle A M C$ [by SAS congruence rule]

$\angle A M B=\angle A M C$ [CPCT]

Also,

$ \begin{aligned} & \angle A M B+\angle A M C = 180^{\circ} \\ \Rightarrow & \angle A M B = 90^{\circ} \end{aligned} $ [linear pair]

$\angle 1=\angle 2$ [by SSS congruence rule]

$ \begin{aligned} & A B=A C \\ & \angle 1=\angle 2 \end{aligned} $

[CPOT] Now, in $\triangle A B M$ and $\triangle A C M$, $A M$ is common. [given] [proved above]

We know that a perpendicular from centre of circle bisects the chord.

So, $O A$ is perpendicular bisector of $B C$. Let $A M=x$, then $O M=9-x$ $[\because O A=$ radius $=9 cm]$

In right angled $\triangle A M C, \quad A C^{2}=A M^{2}+M C^{2}$

i.e.,

$(\text{ Hypotenuse })^{2}=(\text{ Base })^{2}+(\text{ Perpendicular })^{2}$

$$ \begin{equation*} M C^{2}=6^{2}-x^{2} \tag{i} \end{equation*} $$

and in right $\triangle O M C, \quad O C^{2}=O M^{2}+M C^{2} \quad$ [by Pythagoras theorem]

$\Rightarrow$ $M C^{2}=9^{2}-(9-x)^{2}$

From Eqs. (i) and (ii),

In right angled $\triangle A B M$,

From eqs. (i) and (ii), $\quad$ $ 6^{2}-x^{2}=9^{2}-(9-x)^{2} $

$ \begin{array}{ll} \Rightarrow & 36-x^{2} = 81-(81+x^{2}-18 x) &\\ \Rightarrow & 36 = 18 x \Rightarrow x=2 \\ \therefore & A M = x=2 \\ \text{In right angled } \triangle ABM, & A B^{2} = B M^{2}+A M^{2} & \text{ [by Pythagoras theorem] } \\ 6^{2} = B M^{2}+2^{2} \\ \Rightarrow & B M^{2} = 36-4=32 \\ \Rightarrow & B M = 4 \sqrt{2} \\ \therefore B C = 2 B M=8 \sqrt{2} cm \\ \therefore \text{ Area of } \triangle A B C = \dfrac{1}{2} \times \text{ Base } \times \text{ Height } \\ & =\dfrac{1}{2} \times B C \times A M \\ & =\dfrac{1}{2} \times 8 \sqrt{2} \times 2=8 \sqrt{2} cm^{2} \end{array} $

[by Pythagoras theorem]

Hence, the required area of $\triangle A B C$ is $8 \sqrt{2} cm^{2}$.

14. $ A$ is a point at a distance $13 cm$ from the centre $\boldsymbol{{}O}$ of a circle of radius 5 $cm$. $A P$ and $A Q$ are the tangents to the circle at $P$ and $Q$. If a tangent $B C$ is drawn at a point $\boldsymbol{{}R}$ lying on the minor $arc \boldsymbol{{}P Q}$ to intersect $\boldsymbol{{}A P}$ at $\boldsymbol{{}B}$ and $A Q$ at $C$, find the perimeter of the $\triangle A B C$.

Show Answer

Solution

Given Two tangents are drawn from an external point $A$ to the circle with centre $O$,

$ O A=13 cm $

Tangent $B C$ is drawn at a point $R$. radius of circle equals $5 cm$.

To find perimeter of $\triangle A B C$. Proof

$ \angle O P A=90^{\circ} $

[tangent at any point of a circle is perpendicular to the radius through the point of contact]

$ \begin{aligned} & \therefore \quad O A^{2}=O P^{2}+P A^{2} \quad \text{ [by Pythagoras theorm] } \\ & \Rightarrow \quad P A^{2}=144=12^{2} \\ & \Rightarrow \quad P A=12 cm \\ & \text{ Now, } \quad \text{ perimeter of } \triangle A B C=A B+B C+C A \\ & =(A B+B R)+(R C+C A) \\ & =A B+B P+C Q+C A \end{aligned} $

$[A P=A Q$ tangent from internal point to a circle are equal $]$

Hence, the perimeter of $\triangle A B C=24 cm$.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ