Heron's Formula

Multiple Choice Questions(MCQs)

1. An isosceles right triangle has area $8 ~cm^{2}$. The length of its hypotenuse is

(A) $\sqrt{32} ~cm$

(B) $\sqrt{16} ~cm$

(C) $\sqrt{48} ~cm$

(D) $\sqrt{24} ~cm$

Show Answer

Solution

Given: An isosceles right triangle has area $8 ~cm^{2}$.

Area of an isosceles right triangle $=\dfrac{1}{2} \times$ Base $\times$ Height

So, $8=\dfrac{1}{2} \times$ Base $\times$ Height

$(\text{ Base })^{2}=16 \quad$ [Base $=$ height, as triangle is an isosceles]

Base $=\sqrt{16}$

Base $=4 ~cm$

See the triangle $ABC$, using Pythagoras theorem:

$ \begin{aligned} A C^{2}+A B^{2}+B C^{2} & =4^{2}+4^{2} \\ & =16+16 \\ A C^{2} & =32 \\ A C & =\sqrt{32} \end{aligned} $

Therefore, the length of its hypotenuse is $\sqrt{32}$.

Hence, the correct option is (A).

2. The perimeter of an equilateral triangle is $60 m$. The area is

(A) $10 \sqrt{3} m^{2}$

(B) $15 \sqrt{3} m^{2}$

(C) $20 \sqrt{3} m^{2}$

(D) $100 \sqrt{3} m^{2}$

Show Answer

Solution

Given: The perimeter of an equilateral triangle is $60 m$.

Suppose that each side of an equilateral be a.

$a+a+a=60 m$

$3 a=60 m$

$a=20 m$

Area of an equilateral triangle $=\dfrac{\sqrt{3}}{4} \times(\text{ Side })^{2}$

$ \begin{aligned} & =\dfrac{\sqrt{3}}{4} \times(20)^{2} \\ & =100 \sqrt{3} m^{2} \end{aligned} $

Therefore, the area of the triangle is $100 \sqrt{3} m^{2}$.

3. The sides of a triangle are $56 ~cm, 60 ~cm$ and $52 ~cm$ long. Then the area of the triangle is

(A) $1322 ~cm^{2}$

(B) $1311 ~cm^{2}$

(C) $1344 ~cm^{2}$

(D) $1392 ~cm^{2}$

Show Answer

Solution

The sides of a triangle are $a=56 ~cm, b=60 ~cm$ and $c=52 ~cm$.

So, semi-perimeter of a triangle will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{56+60+52}{2} \\ & =\dfrac{168}{2} \\ & =84 ~cm \end{aligned} $

Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)} \quad$ [By heron’s formula]

$ \begin{aligned} & =\sqrt{84(84-56)(84-60)(84-52)} \\ & =\sqrt{84 \times 28 \times 24 \times 32} \\ & =\sqrt{4 \times 7 \times 3 \times 4 \times 7 \times 4 \times 2 \times 3 \times 4 \times 4 \times 2} \\ & =\sqrt{4^{6} \times 7^{2} \times 3^{2}} \\ & =4^{3} \times 7 \times 3 \\ & =1344 ~cm^{2} \end{aligned} $

Hence, the correct option is (C).

4. The area of an equilateral triangle with side $2 \sqrt{3} ~cm$ is

(A) $5.196 ~cm^{2}$

(B) $0.866 ~cm^{2}$

(C) $3.496 ~cm^{2}$

(D) $1.732 ~cm^{2}$

Show Answer

Solution

Given: The side of an equilateral triangle is $2 \sqrt{3} ~cm$.

Now, area of an equilateral triangle $=\dfrac{\sqrt{3}}{4}(\text{ Side })^{2}$

$ \begin{aligned} & =\dfrac{\sqrt{3}}{4} \times(2 \sqrt{3})^{2} \\ & =\dfrac{\sqrt{3}}{4} \times 4 \times 3 \\ & =3 \sqrt{3} \\ & =3 \times 1.732 \\ & =5.196 ~cm^{2} \end{aligned} $

Hence, the area of an equilateral triangle is $5.196 ~cm^{2}$.

Hence, the correct option is (A).

5. The length of each side of an equilateral triangle having an area of $9 \sqrt{3} ~cm^{2}$ is

(A) $8 ~cm$

(B) $36 ~cm$

(C) $4 ~cm$

(D) $6 ~cm$

Show Answer

Solution

Given: area of an equilateral triangle $=9 \sqrt{3} ~cm^{2}$

Area of an equilateral triangle $=\dfrac{\sqrt{3}}{4} \times(\text{ Side })^{2}$

$ \begin{aligned} \dfrac{\sqrt{3}}{4} \times(\text{ Side })^{2} & =9 \sqrt{3} \\ (\text{ Side })^{2} & =9 \times 4 \\ \text{ Side } & =\sqrt{9 \times 4} \\ \text{ Side } & =3 \times 2 \\ \text{ Side } & =6 ~cm \end{aligned} $

Therefore, the length of an equilateral triangle is $6 ~cm$.

Hence, the correct option is (D).

6. If the area of an equilateral triangle is $16 \sqrt{3} ~cm^{2}$, then the perimeter of the triangle is

(A) $48 ~cm$

(B) $24 ~cm$

(C) $12 ~cm$

(D) $306 ~cm$

Show Answer

Solution

Given: The area of an equilateral triangle is $16 \sqrt{3} ~cm^{2}$.

Area of equilateral triangle $=\dfrac{\sqrt{3}}{4} \times(\text{ side })^{2}$

$ \begin{aligned} 16 \sqrt{3} & =\dfrac{\sqrt{3}}{4} \times(\text{ side })^{2} \\ (\text{ Side })^{2} & =\dfrac{16 \sqrt{3} \times 4}{\sqrt{3}} \\ & =64 \end{aligned} $

$ \begin{aligned} & \text{ Side }=\sqrt{64} \\ & \text{ Side }=8 ~cm \end{aligned} $

Therefore, the perimeter of triangle $8+8+8=24 ~cm$

Hence, the correct option is (B).

7. The sides of a triangle are $35 ~cm, 54 ~cm$ and $61 ~cm$, respectively. The length of its longest altitude

(A) $16 \sqrt{5} ~cm$

(B) $10 \sqrt{5} ~cm$

(C) $24 \sqrt{5} ~cm$

(D) $28 ~cm$

Show Answer

Solution

Given: The sides of a triangle are $a=35 ~cm, b=54 ~cm$ and $c=61 ~cm$, respectively. So, semiperimeter of a triangle is:

$s=\dfrac{a+b+c}{2}=\dfrac{35+54+61}{2}=\dfrac{150}{2}=75$

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{75(75-35)(75-54)(75-61)} \\ & =\sqrt{75 \times 40 \times 21 \times 14} \\ & =\sqrt{5 \times 5 \times 3 \times 2 \times 2 \times 2 \times 5 \times 3 \times 7 \times 7 \times 2} \\ & =5 \times 3 \times 2 \times 2 \times 7 \sqrt{5} \\ & =420 \sqrt{5} \end{aligned} $

As know that,

Area of triangle $ABC=\dfrac{1}{2} \times$ Base $\times$ Altitude

$ \begin{aligned} \dfrac{1}{2} \times 35 \times \text{ Altitude } & =420 \sqrt{5} \\ \text{ Altitude } & =\dfrac{420 \sqrt{5} \times 2}{35} \\ \text{ Altitude } & =24 \sqrt{5} \end{aligned} $

Therefore, the length of altitude is $24 \sqrt{5}$.

Hence, the correct option is $(C)$.

8. The area of an isosceles triangle having base $2 ~cm$ and the length of one of the equal sides $4 ~cm$, is

(A) $\sqrt{15} ~cm^{2}$

(B) $\sqrt{\dfrac{15}{2}} ~cm^{2}$

(C) $2 \sqrt{15} ~cm^{2}$

(D) $4 \sqrt{15} ~cm^{2}$

Show Answer

Solution

Given: The length of side be $a=2 ~cm$ and $b=4 ~cm$.

As we know that,

Area of an isosceles triangle $=\dfrac{a}{4} \sqrt{4 b^{2}-a^{2}}$

$ \begin{aligned} & =\dfrac{2 \sqrt{4 \times(4)^{2}-2^{2}}}{4} \\ & =\dfrac{\sqrt{64-4}}{2} \end{aligned} $

$ \begin{aligned} & =\dfrac{\sqrt{60}}{2} \\ & =\dfrac{2 \sqrt{15}}{2} \\ & =\sqrt{15} ~cm^{2} \end{aligned} $

Hence, the correct option is (A).

9. The edges of a triangular board are $6 ~cm, 8 ~cm$ and $10 ~cm$. The cost of painting it at the rate of 9 paise per $~cm^{2}$ is

(A) Rs 2.00

(B) Rs 2.16

(C) Rs 2.48

(D) Rs 3.00

Show Answer

Solution

Given: The edges of a triangular board are $a=6 ~cm, b=8 ~cm$ and $c=10 ~cm$.

Now, semi-perimeter of a triangular board will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{6+8+10}{2} \\ & =\dfrac{24}{2} \\ & =12 ~cm \end{aligned} $

Now, by Heron’s formula:

Area of a triangle board $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{12(12-6)(12-8)(12-10)} \\ & =\sqrt{12 \times 6 \times 4 \times 2} \\ & =\sqrt{12^{2} \times 2^{2}} \\ & =12 \times 2 \\ & =24 ~cm^{2} \end{aligned} $

As, the cost of painting for area $1 ~cm^{2}=$ Rs. 0.09

So, Cost of paint for area $24 ~cm^{2}=0.09 \times 24=$ Rs. 2.16

Therefore, the cost of a triangular board is Rs. 2.16.

Hence, the correct option is (B).

Short Answer Questions with Reasoning

Write True or False and justify your answer:

1. The area of a triangle with base $4 ~cm$ and height $6 ~cm$ is $24 ~cm^{2}$.

Show Answer

Solution

Given: The base and height of a triangle are $4 ~cm$ and $6 ~cm$ respectively.

As we know that, area of a triangle $=\dfrac{1}{2} \times$ Base $\times$ Height

$ \begin{aligned} & =\dfrac{1}{2} \times 4 \times 6 \\ & =12 ~cm^{2} \end{aligned} $

Hence, the given statement is false.

2. The area of $\triangle ABC$ is $8 ~ c m^{2}$ in which $A B=A C=4 ~ c m$ and $\angle A=90^{\circ}$.

Show Answer

Solution

Area of a triangle $=\dfrac{1}{2} \times$ Base $\times$ Height

$ \begin{aligned} & =\dfrac{1}{2} \times 4 \times 4 \\ & =8 ~cm^{2} \end{aligned} $

Hence, the given statement is true.

3. The area of the isosceles triangle is $\dfrac{5}{4} \sqrt{11} ~cm^{2}$, if the perimeter is $11 ~cm$ and the base is $5 ~ c m$.

Show Answer

Solution

Suppose that side of isosceles triangle be a.

Now, perimeter of an isosceles triangle:

$2 s=5+a+a[2 s=a+b+c]$

$11=5+2 a$

$2 a=11-5$

$2 a=6$

$a=3$

Now, the formula of an area of isosceles triangle $=\dfrac{a}{4} \sqrt{4 b^{2}-a^{2}}$

So, area of an isosceles triangle $=\dfrac{5 \sqrt{4 \times(3)^{2}-(5)^{2}}}{4}$

$ \begin{aligned} & =\dfrac{5 \sqrt{4 \times 9-25}}{4} \\ & =5 \times \dfrac{\sqrt{36-25}}{4} \\ & =\dfrac{5 \sqrt{11}}{4} ~cm^{2} \end{aligned} $

Hence, the given statement is true.

4. The area of the equilateral triangle is $20 \sqrt{3} ~cm^{2}$ whose each side is $8 ~ cm$.

Show Answer

Solution

Given, side of an equilateral triangle be $8 ~cm$.

Area of the equilateral triangle $=\dfrac{\sqrt{3}}{4}(\text{ Side })^{2}$

$ \begin{aligned} & =\dfrac{\sqrt{3}}{4} \times(8)^{2} \\ & =\dfrac{64}{3} \sqrt{ } 3[\therefore \text{ side }=8 ~cm] \\ & =16 \sqrt{3} ~cm^{2} \end{aligned} $

Hence, the given statement is false.

5. If the side of a rhombus is $10 ~cm$ and one diagonal is $16 ~cm$, the area of the rhombus is $96 ~cm^{2}$.

Show Answer

Solution

Let $PQRS$ be the rhombus whose one diagonal is $16 ~cm$, the area of the rhombus is $10 ~cm$.

As we know that diagonal of a rhombus bisect each other at right angles. So, $OA=OC=8 ~cm$ and $OB=OD$

Now, in triangle $AOB, \angle A O B=90^{\circ}$

So, $A B^{2}=O A^{2}+O B^{2}$

[By Pythagoras theorem]

$ \begin{aligned} A B^{2} & =O A^{2}+O B^{2} \\ O B^{2} & =A B^{2}-O A^{2} \\ & =(10)^{2}-8^{2} \\ & =100-64 \\ & =36 \end{aligned} $

So, $O B=\sqrt{36}=6$

Also,

$ \begin{aligned} O B & =2(O A)=2 \times 6 \\ & =12 ~cm \end{aligned} $

Therefore, area of rhombus $=\dfrac{1}{2} \times$ Products of diagonals

$ \begin{aligned} & =\dfrac{1}{2} \times 16 \times 12 \\ & =96 ~cm^{2} \end{aligned} $

Hence, the given statement is true.

6. The base and the corresponding altitude of a parallelogram are $10 ~cm$ and $3.5 ~cm$, respectively. The area of the parallelogram is $30 ~cm^{2}$.

Show Answer

Solution

Given, parallelogram in which base $=10 ~cm$ and altitude $=3.5 ~cm$

Area of a parallelogram $=$ Base $x$ Altitude

$ \begin{aligned} & =10 \times 3.5 \\ & =35 ~cm^{2} \end{aligned} $

Hence, the given statement is false.

7. The area of a regular hexagon of side ’ $a$ ’ is the sum of the areas of the five equilateral triangles with side $a$.

Show Answer

Solution

Given: The side of a regular hexagon is ’ $a$ ‘.

As we know that the regular hexagon is divided into six equilateral triangles. So,

Area of regular hexagon $=$ Sum of area of the six equilateral triangles.

Hence, the given statement is false.

8. The cost of levelling the ground in the form of a triangle having the sides $51 m, 37 m$ and $20 m$ at the rate of $Rs 3$ per $m^{2}$ is $Rs 918$.

Show Answer

Solution

Given: The sides of the ground are $a=51 m, b=37 ~cm$, and $c=20 ~cm$. Now, the semiparameter(s) of ground is:

$2 s=a+b+c$

$2 s=51 m+37 m+20 m$

$2 s=108 m$

$s=\dfrac{108 m}{2}$

$s=54 m$

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{54(54-51)(54-37)(54-20)} \\ & =\sqrt{54 \times 3 \times 17 \times 34} \\ & =\sqrt{3 \times 3 \times 3 \times 2 \times 3 \times 17 \times 17 \times 2} \\ & =3 \times 3 \times 17 \times 2 \\ & =306 m^{2} \end{aligned} $

The cost of levelling of $1 m^{2}$ area is Rs. 3 .

So, cost of levelling the ground of $306 m^{2}$ area = Rs. $3 \times 306=$ Rs. 918

Hence, the given statement is true.

9. In a triangle, the sides are given as $11 ~cm, 12 ~cm$ and $13 ~cm$. The length of the altitude is $10.25 ~cm$ corresponding to the side having length $12 ~cm$.

Show Answer

Solution

Given: The length of the altitude is 10.25 . And in a triangle, the sides are $a=11 ~cm, b=12 ~cm$ and $c=13 ~cm$.

So, semi-perimeter(s) will be:

$2 s=a+b+c$

$2 s=11 ~cm+12 ~cm+13 ~cm$

$2 s=36 ~cm$

$s=\dfrac{36}{2}$

$s=18 ~cm$

So, area of triangle $=\dfrac{2 \times \text{ Area of } \Delta}{\text{ Base }}$

$ \begin{aligned} & =\dfrac{2 \times 6 \sqrt{105}}{12} \\ & =\sqrt{105} \\ & =10.25 \end{aligned} $

Hence, the given statement is true.

Short Answer Questions

1. Find the cost of laying grass in a triangular field of sides $50 m, 65 m$ and $65 m$ at the rate of $Rs 7$ per $m^{2}$.

Show Answer

Solution

Given: The sides of the ground are $a=50 m, b=65 m$, and $c=65 m$. Now, the semiparameter(s) of the cost of levelling is:

$2 s=a+b+c$

$2 s=50 m+65 m+65 m$

$2 s=180 m$

$s=\dfrac{180 m}{2}$

$s=90 m$

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{90(90-50)(90-65)(90-65)} \\ & =\sqrt{90 \times 40 \times 25 \times 25} \\ & =3 \times 2 \times 10 \times 25 \\ & =6 \times 250 \\ & =1500 m^{2} \end{aligned} $

The cost of laying grass $1 m^{2}$ area is Rs. 7 .

Therefore, the cost of levelling grass per $1500 m^{2}=$ Rs. $7 \times 1500=$ Rs. 10500

2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $13 m, 14 m$ and $15 m$. The advertisements yield an earning of $Rs 2000$ per $m^{2}$ a year. A company hired one of its walls for 6 months. How much rent did it pay?

Show Answer

Solution

Let the sides of a triangular walls are $a=13 m, b=14 m$ and $c=15 m$.

Now, the semi-perimeter of triangular side wall,

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{13+14+15}{2} \\ & =21 m \end{aligned} $

Now, area of triangular wall $=\sqrt{s(s-a)(s-b)(s-c)}$ [By Heron’s formula]

$ \begin{aligned} & =\sqrt{21(21-13)(21-14)(21-15)} \\ & =\sqrt{21 \times(21-13) \times(21-14) \times(21-15)} \\ & =\sqrt{21 \times 8 \times 7 \times 6} \\ & =\sqrt{21 \times 4 \times 2 \times 7 \times 3 \times 2} \\ & =\sqrt{21^{2} \times 4^{2}} \\ & =21 \times 4 \\ & =84 m^{2} \end{aligned} $

The advertisement yield earning per year for $1 m^{2}$ area is Rs. 2000 .

Therefore, advertisement yield earning per year on $84 m^{2}=2000 \times 84=$ Rs. 168000 .

According to the question, the company hired one of its walls for 6 months, therefor company pay the rent $=\dfrac{1}{2} \times 168000=$ Rs. 84000 .

Hence, the company paid rent Rs. 84000 .

3. From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are $14 ~cm, 10$ $~cm$ and $6 ~cm$. Find the area of the triangle.

Show Answer

Solution

Let $ABC$ be an equilateral triangle, $O$ be the interior point and $OP=14 ~cm, OQ=10 ~cm$ and $OR=6 ~cm$. Also, sides of an equilateral triangle be $a m$.

Area of triangle $OAB=\dfrac{1}{2} \times A B \times O P[.$ Area of a triangle $=\dfrac{1}{2} \times($ Base $\times$ Height $.)]$

$ \begin{aligned} & =\dfrac{1}{2} \times a \times 14 \\ & =7 a ~cm^{2} \end{aligned} $

Similarly, Area of triangle $OBC=\dfrac{1}{2} \times B C \times O Q$

$ \begin{aligned} & =\dfrac{1}{2} \times a \times 10 \\ & =5 a ~cm^{2} \end{aligned} $

Again, area of triangle $OAC=\dfrac{1}{2} \times A C \times O R$

$ \begin{aligned} & =\dfrac{1}{2} \times a \times 6 \\ & =3 a ~cm^{2} \end{aligned} $

See the given figure, area of equilateral triangle $ABC=$ Area of $(\triangle O A B+\triangle O B C+\triangle O A C)$

$=(7 a+5 a+3 a) ~cm^{2}$

$=15 a ~cm^{2}$

Now, semi-perimeter of triangle $ABC$ is:

$s=\dfrac{a+a+a}{2}$

$s=\dfrac{3 a}{2} ~cm$

As, area of equilateral triangle $ABC=\sqrt{s(s-a)(s-b)(s-c)} \quad$ [By Heron’s formula]

$ \begin{aligned} & =\sqrt{\dfrac{3 a}{2}(\dfrac{3 a}{2}-a)(\dfrac{3 a}{2}-a)(\dfrac{3 a}{2}-a)} \\ & =\sqrt{\dfrac{3 a}{2} \times \dfrac{a}{2} \times \dfrac{a}{2} \times \dfrac{a}{2}} \\ & =\dfrac{\sqrt{3}}{4} a^{2} \ldots \text{ (II) } \end{aligned} $

According to the equation (I) and (II), get:

$ \begin{aligned} \dfrac{\sqrt{3}}{4} a^{2} & =15 a \\ a & =\dfrac{15 \times 4}{\sqrt{3}} \\ a & =\dfrac{60}{\sqrt{3}} \\ a & =20 \sqrt{3} \end{aligned} $

Putting $a=20 \sqrt{3}$ in equation (II), get:

Area of triangle $ABC=\dfrac{\sqrt{3}}{4} \times(20 \sqrt{3})^{2}$

$ \begin{aligned} & =\dfrac{\sqrt{3}}{4} \times 400 \times 3 \\ & =300 \sqrt{3} ~cm^{2} \end{aligned} $

Hence, the area of an equilateral triangle is $300 \sqrt{3} ~cm^{2}$.

4. The perimeter of an isosceles triangle is $32 ~cm$. The ratio of the equal side to its base is $3: 2$. Find the area of the triangle.

Show Answer

Solution

Given: Perimeter of triangle $=32 ~cm$

The ratio of the equal side to its base of an isosceles triangle is $3: 2$. Let sides of an isosceles triangle be $3 x, 3 x$ and $2 x$.

So, perimeter of the triangle $=3 x+3 x+2 x=8 x$

$32=8 x$

$x=\dfrac{32}{8}$

$x=4$

Since, the sides of the isosceles triangle are $3 \times 4=12,3 \times 4=12$ and $2 \times 4=8 ~cm$.

Now, semi-perimeter of triangle will be:

$ \begin{aligned} s & =\dfrac{12+12+8}{2} \\ & =\dfrac{32}{2} \\ & =16 ~cm \end{aligned} $

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{16(16-12)(16-12)(16-8)} \\ & =\sqrt{16 \times 4 \times 4 \times 8} \\ & =4 \times 4 \times 2 \sqrt{2} ~cm^{2} \\ & =32 \sqrt{2} \end{aligned} $

Therefore, the area of an isosceles triangle $ABC=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{16(16-12)(16-12)(16-8)} \\ & =\sqrt{16 \times 4 \times 4 \times 8} \\ & =32 \sqrt{2} ~cm^{2} \end{aligned} $

Therefore, the area of an isosceles triangle is $32 \sqrt{2} ~cm^{2}$.

5. Find the area of a parallelogram given in Fig. Also find the length of the altitude from vertex $A$ on the side DC.

Show Answer

Solution

Let the sides of a triangle $BCD$ are $a=12 ~cm, b=17 ~cm$ and $c=25 ~cm$ and altitude of $a$ parallelogram is $h$.

Area of parallelogram, $ABCD=2$ (Area of triangle BCD)

Now, semi-perimeter(s) of triangle BCD will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{12+17+25}{2} \\ & =\dfrac{54}{2} \\ & =27 ~cm \end{aligned} $

Area of triangle $BCD=\sqrt{s(s-a)(s-b)(s-c)} \quad$ [By heron’s formula]

$ \begin{aligned} & =\sqrt{27(27-12)(27-17)(27-25)} \\ & =\sqrt{27 \times 15 \times 10 \times 2} \\ & =\sqrt{9 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2} \\ & =3 \times 3 \times 5 \times 2 ~cm^{2} \\ & =90 ~cm^{2} \end{aligned} $

So, area of parallelogram $ABCD=2 \times$ Area of triangle $BCD$

$$ \begin{align*} & =2 \times 90 ~cm^{2} \\ & =180 ~cm^{2} \tag{II} \end{align*} $$

As, Area of parallelogram $ABCD=$ Base $\times$ Altitude

$ \begin{aligned} 180 & =DC \times h \\ 180 & =12 \times h \\ h & =\dfrac{180}{12} \\ h & =15 ~cm \end{aligned} $

Therefore, the area of parallelogram is $180 ~cm^{2}$ and the length of altitude is $15 ~cm$.

6. A field in the form of a parallelogram has sides $60 m$ and $40 m$ and one of its diagonals is $80 m$ long. Find the area of the parallelogram.

Show Answer

Solution

Given: Let a field in the form of a parallelogram $A B C D$ has sides $60 m$ and $40 m$ and one of its diagonals is $80 m$ long.

See the figure, in triangle $A B C$, let $a=40 m, b=60 m$ and $c=80 m$.

Now, semi perimeter(s) of triangle $ABC$ :

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{40+60+80}{2} \\ & =\dfrac{180}{2} \\ & =90 m \end{aligned} $

So, area of triangle $ABC$ will be $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{90(90-40)(90-60)(90-80)} \\ & =\sqrt{90 \times 50 \times 30 \times 10} \\ & =\sqrt{3 \times 30 \times 5 \times 10 \times 30 \times 10} \\ & =300 \sqrt{15} \\ & =1161.895 m^{2} \end{aligned} $

Now, from equation (I),

Area of parallelogram $ABCD=2 \times 1161.895 m^{2}=2323.79 m^{2}$.

Therefore, the area of parallelogram ABCD is $2323.79 m^{2}$.

7. The perimeter of a triangular field is $420 m$ and its sides are in the ratio 6 $: 7: 8$. Find the area of the triangular field.

Show Answer

Solution

Given: The perimeter of a triangular field is $420 m$ and its sides are in the ratio $6: 7: 8$.

According to the question, Let the sides in meters are $a=6 x, b=7 x$ and $c=8 x$.

So, perimeter of the triangle $=6 x+7 x+8 x$

$420=21 x$ $x=\dfrac{420}{21}$

$x=20$

Since, the sides of the triangular field are $a=6 \times 20 ~cm=120 m, b=7 \times 20 m=140 m$ and $c=8 \times 20 m=160 m$.

Now, semi-perimeter(s) of triangle will be:

$ \begin{aligned} s & =\dfrac{1}{2} \times 420 m \\ & =210 m \end{aligned} $

Area of the triangle field $=\sqrt{s(s-a)(s-b)(s-c)}$ [Using Heron’s formula]

$ \begin{aligned} & =\sqrt{210(210-120)(210-140)(210-160)} \\ & =\sqrt{210 \times 90 \times 70 \times 50} \\ & =100 \sqrt{7 \times 3 \times 3^{2} \times 7 \times 5} \\ & =100 \times 7 \times 3 \times \sqrt{15} \\ & =2100 \sqrt{15} \end{aligned} $

Therefore, the area of the triangular field is $2100 \sqrt{15}$.

8. The sides of a quadrilateral $A B C D$ are $6 ~cm, 8 ~cm, 12 ~cm$ and $14 ~cm$ (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.

Show Answer

Solution

Given: The sides of a quadrilateral $ABCD$ are $AB=6 ~cm, BC=8 ~cm$, and $CD=12 ~cm$ and $DA=14 ~cm$.

Construction: Join AC.

In the right triangle $ABC$, whose angle $B$ is right angle. So, $A C^{2}=A B^{2}+B C^{2}$ [By Pythagoras theorem]

$A C^{2}=6^{2}+8^{2}$

$A C^{2}=36+64$

$A C=\sqrt{100}$

$A C=10$

Area of quadrilateral $ABCD=$ Area of triangle $ABC+$ Area of triangle $ACD$

Now, area of triangle $ABC=\dfrac{1}{2} \times A B \times A C$

$ \begin{aligned} & =\dfrac{1}{2} \times 6 \times 8 \\ & =24 ~cm^{2} \end{aligned} $

In triangle $A C D$, let $A C=a=10 ~cm, C D=b=12 ~cm$, and $D A=c=14 ~cm$.

Now, semi-perimeter of triangle ACD will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{10+12+14}{2} \\ & =\dfrac{36}{2} \\ & =18 ~cm \end{aligned} $

So, area of triangle $ACD=\sqrt{s(s-a)(s-b)(s-c)}$ [By heron’s formula]

$ \begin{aligned} & =\sqrt{18(18-10)(18-12)(18-14)} \\ & =\sqrt{18 \times 8 \times 6 \times 4} \\ & =\sqrt{(3)^{2} \times 2 \times 4 \times 2 \times 3 \times 2 \times 4} \\ & =3 \times 4 \times 2 \sqrt{3 \times 2} \\ & =24 \sqrt{6} ~cm^{2} \end{aligned} $

Hence, the area of the quadrilateral $ABCD$ is $24 \sqrt{6} ~cm^{2}$.

9. A rhombus shaped sheet with perimeter $40 ~cm$ and one diagonal $12 ~cm$, is painted on both sides at the rate of $Rs 5$ per $m^{2}$. Find the cost of painting.

Show Answer

Solution

Given: One diagonal $=12 ~cm$, Perimeter of rhombus $=40 ~cm$

So,

$4 \times$ Side $=40$

side $=\dfrac{40}{4}$

Side $=10 ~cm$

In triangle $A B C$, let $a=10 ~cm, b=10 ~cm$, and $c=12 ~cm$.

As we know that rhombus is also a parallelogram, so its diagonal divide it into two congruent triangles of equal area. So,

Area of rhombus $=2($ Area of triangle ABC)

Now, Semi-perimeter of triangle $ABC$ will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{10+10+12}{2} \\ & =\dfrac{32}{2} \\ & =16 ~cm \end{aligned} $

So, area of triangle $ABC=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{16(16-10)(16-10)(16-12)} \\ & =\sqrt{16 \times 6 \times 6 \times 4} \\ & =\sqrt{2304} \\ & =48 ~cm^{2} \end{aligned} $

Since, area of rhombus $=2$ (Area of triangle $ABC)$

$ \begin{aligned} & =2 \times 48 ~cm^{2} \\ & =96 ~cm^{2} \end{aligned} $

The cost of painting of the sheet is Rs. 5 per $m^{2}$.

Therefore, cost of painting both sides of rhombus shaped sheet $ABCD=$ Rs. $(2 \times 5 \times 96)=$ Rs. 960 .

10. Find the area of the trapezium PQRS with height $P Q$ given in Fig.

Show Answer

Solution

Let PQRS is a trapezium, in which draw a line RT perpendicular to PS.

See the figure, $ST=PS-TP=12-7=5 ~cm$

So, in right triangle STR,

$(S R)^{2}=(S T)^{2}+(T R)^{2}$ [By using Pythagoras theorem]

$(13)^{2}=(5)^{2}+(T R)^{2}$

$(T R)^{2}=169-25$

$(T R)^{2}=144$

$T R=12 m$

Now, area of triangle STR $=\dfrac{1}{2} \times T R \times T S$ [area of triangle $=\dfrac{1}{2} \times$ Base $\times$ Height

$ \begin{aligned} & =\dfrac{1}{2} \times 12 \times 5 \\ & =30 m^{2} \end{aligned} $

As, area of rectangle $PQRT=P Q \times R Q=12 \times 7=84 m^{2}$

Now, area of trapezium $=$ Area of DSTR + Area of rectangle PQRT

$ \begin{aligned} & =30+84 \\ & =114 m^{2} \end{aligned} $

Therefore, the area of trapezium is $114 m^{2}$.

Long Answer Questions

1. How much paper of each shade is needed to make a kite given in Fig., in which $A B C D$ is a square with diagonal $44 ~cm$ ?

Show Answer

Solution

Given: Diagonal of square $ABCD=44 ~cm$

Also, $ABCD$ is a square. $So, AB=BC=CD=DA$

Now, in triangle $A C D$,

$ \begin{aligned} A C^{2} & =A D^{2}+D C^{2} \\ 44^{2} & =A D^{2}+A D^{2} \\ 2 A D^{2} & =44 \times 44 \\ 2 A D^{2} & =22 \times 2 \times 22 \times 2 \\ A D^{2} & =22 \times 2 \times 22 \\ A D & =\sqrt{22 \times 2 \times 22} \\ A D & =22 \sqrt{2} \end{aligned} $

Now, area of square $ABCD=$ Side $\times$ Side $=22 \sqrt{2} \times 22 \sqrt{2}=968 ~cm^{2}$

Since, area of square is divided into four parts.

Now, the area of paper of Red shade needed to make the kite is: $=\dfrac{1}{4} \times 968 ~cm^{2}=242 ~cm^{2}$

Also, area of green portion is:

$=\dfrac{1}{4} \times 968 ~cm^{2}$

$=242 ~cm^{2}$

Similarly, area of yellow portion is:

$ =\dfrac{1}{2} \times 968 ~cm^{2}=484 ~cm^{2} $

In triangle $P C Q$, Let $P C=a=20 ~cm, C Q=b=20 ~cm$, and $P Q=c=14 ~cm$.

Now, semi-perimeter of triangle PCQ will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{20+20+14}{2} \\ & =\dfrac{54}{2} \\ & =27 ~cm \end{aligned} $

So, area of triangle PCQ $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{27 \times(27-20) \times(27-20)(27-14)} \\ & =\sqrt{27 \times 7 \times 7 \times 13} \\ & =\sqrt{3 \times 3 \times 3 \times 7 \times 7 \times 13} \\ & =21 \sqrt{39} \\ & =21 \times 6.24 \\ & =131.04 ~cm^{2} \end{aligned} $

Since, the total area of green portion $=242 ~cm^{2}+131.04 ~cm^{2}=373.04 ~cm^{2}$

Therefore, the paper required for each shade to make a kite is red paper $=242 ~cm^{2}$, yellow paper $=484 ~cm^{2}$, and green paper $=373.04 ~cm^{2}$.

2. The perimeter of a triangle is $50 ~cm$. One side of a triangle is $4 ~ c m$ longer than the smaller side and the third side is $6 ~cm$ less than twice the smaller side. Find the area of the triangle.

Show Answer

Solution

Given: the perimeter of a triangle is $50 ~cm$.

Now, semi-perimeter(s) of the triangle is $=\dfrac{\text{ Perimeter of triangle }}{2}=\dfrac{50}{2}=25$

Suppose that the smaller side of the triangle be $a=x~cm$. So, the second side will $be b=(x+4)$ $~cm$ and $3^{\text{rd }}$ side will be $c=(2 x-6) ~cm$.

Now, perimeter of triangle $=a+b+c=x+(x+4)+(2 x-6)$

$50 ~cm=(4 x-2) ~cm$

$50=4 x-2$

$4 x=50+2$

$4 x=52$

$x=\dfrac{52}{4}$

$x=13$

Since, the three side of the triangle are:

$a=x=13$,

$b=x+4=13+4=17$

$c=2 x-6=2 \times 13-6=26-6=20$.

So, area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$ \begin{aligned} & =\sqrt{25 \times(25-13) \times(25-17) \times(25-20)} \\ & =\sqrt{25 \times 12 \times 8 \times 5} \\ & =\sqrt{5 \times 5 \times 4 \times 3 \times 4 \times 2 \times 5} \\ & =5 \times 4 \times 20 \sqrt{30} ~cm^{2} \\ & =20 \sqrt{30} ~cm^{2} \end{aligned} $

Therefore, the area of triangle is $20 \sqrt{30} ~cm^{2}$.

3. The area of a trapezium is $475 ~cm^{2}$ and the height is $19 ~cm$. Find the lengths of its two parallel sides if one side is $4 ~ c m$ greater than the other.

Show Answer

Solution

Given:

Area of a trapezium $=475 ~cm^{2}$ and Height $=19 ~cm$.

According to the question, let one sides of trapezium is $x$. So, another side will be $x+4$.

Now, Area of trapezium $=\dfrac{1}{2} \times($ Sum of the parallel sides $) \times$ Height

$ \begin{aligned} 475 & =\dfrac{1}{2} \times(x+x+4) \times 19 ~cm \\ 2 x+4 & =\dfrac{950}{19} \\ & =50 \\ 2 x & =50-4 \\ 2 x & =46 \\ x & =23 \end{aligned} $

Therefore, the length of the parallel side of trapezium are $x=23 ~cm$ and $x+4=23+4=27$ $~cm$.

4. A rectangular plot is given for constructing a house, having a measurement of $40 m$ long and $15 m$ in the front. According to the laws, a minimum of $3 m$, wide space should be left in the front and back each and 2 $m$ wide space on each of other sides. Find the largest area where house can be constructed.

Show Answer

Solution

Given: Let a rectangular plot $ABCD$ is constructing a house, having a measurement of $40 m$ long and $15 m$ in the front.

According to the question,

Length of inner-rectangle $(E F)=40-3-3=34 m$

And breadth of inner rectangle $(FG)=15-2-2=11 m$

Now, area of inner rectangle $(EFGH)$ will be $=$ Length $x$ Breadth

$ \begin{aligned} & =E F \times F G \\ & =34 \times 11 m^{2} \\ & =374 m^{2} \end{aligned} $

Therefore, the largest area where house can be constructed $=374 m^{2}$.

5. A field is in the shape of a trapezium having parallel sides $90 m$ and $30 m$. These sides meet the third side at right angles. The length of the fourth side is $100 m$. If it costs $R 4$ to plough $1 m^{2}$ of the field, find the total cost of ploughing the field.

Show Answer

Solution

Given: In the trapezium $ABCD$, the two parallel sides are $AB=90 m, CD=30 m$, and $E C \perp A B$.

So, $EB=AB-EA=90 m-30 m=60 m$

Now, in triangle BEC,

$ \begin{aligned} (B C)^{2} & =(B E)^{2}+(E C)^{2} \\ 100^{2} & =60^{2}+(E C)^{2} \\ (E C)^{2} & =10000-3600 \\ (E C)^{2} & =6400 \\ E C & =\sqrt{6400} \\ E C & =80 m \end{aligned} $

Now, area of trapezium $A B C D=\dfrac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between parallel sides $)$

$ \begin{aligned} & =\dfrac{1}{2} \times(A B+C D) \times E C \\ & =\dfrac{1}{2} \times(90+30) \times 80 \\ & =\dfrac{1}{2} \times 120 \times 80 \\ & =4800 m^{2} \end{aligned} $

The cost of ploughing the field of $1 m^{2}$ is Rs. 4.

Now, The cost of ploughing the field of $4800 m^{2}$ area $=4800 \times$ Rs. $4=$ Rs. 19200 .

Therefore, the total cost of plughing the field is Rs. 19200.

6. In Fig., $\triangle ABC$ has sides $AB=7.5 ~cm, AC=6.5 ~cm$ and $BC=7 ~cm$. On base $B C$ a parallelogram $D B C E$ of same area as that of $\triangle ABC$ is constructed. Find the height DF of the parallelogram.

Show Answer

Solution

Given: in triangle $ABC$, the sides are $AB=a=7.5 ~cm, BC=b=7 ~cm$, and $CA=c=6.5 ~cm$. Now, semi-perimeter of a triangle will be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{7.5+7+6.5}{2} \\ & =\dfrac{21}{2} \\ & =10.5 \end{aligned} $

So, area of triangle $ABC=\sqrt{s(s-a)(s-b)(s-c)}$ [By heron’s formula]

$ \begin{aligned} & =\sqrt{10.5 \times(10.5-7.5)(10.5-7)(10.5-6.5)} \\ & =\sqrt{10.5 \times 3 \times 3.5 \times 4} \\ & =\sqrt{441} \\ & =21 ~cm^{2} \end{aligned} $

Also, the area of parallelogram BCED will be $=$ Base $\times$ Height

$ \begin{aligned} & =B C \times D F \\ & =7 \times D F \end{aligned} $

Now, according to the question,

Area of triangle $ABC=$ Area of parallelogram BCED

$21=7 \times D F$

$D F=\dfrac{21}{4}$

$D F=3 ~cm$

Hence, the height of parallelogram BCED is $3 ~cm$.

7. The dimensions of a rectangle $A B C D$ are $51 ~cm \times 25 ~cm$. A trapezium PQCD with its parallel sides $Q C$ and $P D$ in the ratio $9: 8$, is cut off from the rectangle as shown in the Fig. If the area of the trapezium $PQCD$ is $\dfrac{5}{6}$ th part of the area of the rectangle, find the lengths QC and PD.

Show Answer

Solution

Given: $A B C D$ is a rectangle, where $A B=51 ~cm$ and $B C=25 ~cm$.

The parallel sides $QC$ and $PD$ of the trapezium $PQCD$ are in the ratio of 9:8. Let $QC=9 x$ and $P D=8 x$.

Now, the area of trapezium PQCD:

$=\dfrac{1}{2} \times($ Sum of parallel sides $) \times($ Distance between parallel sides $)$

$=\dfrac{1}{2} \times(9 x+8 x) \times 25 ~cm^{2}$

$=\dfrac{1}{2} \times 17 x \times 25$

Again, area of rectangle $ABCD=B C \times C D=51 \times 25$

Now, according to the question,

Area of trapezium PQCD $=\dfrac{5}{6} \times$ Area of rectangle ABCD

$ \begin{aligned} \dfrac{1}{2} \times 17 x \times 25 & =\dfrac{5}{6} \times 51 \times 25 \\ x & =\dfrac{5}{6} \times 51 \times 25 \times 2 \times \dfrac{1}{17 \times 25} \\ x & =5 \end{aligned} $

Therefore, the length of the trapezium $PQCD, QC=9 x=9 \times 5=45 ~cm$ and, $PD=8 x=$ $8 \times 5=40 ~cm$.

8. A design is made on a rectangular tile of dimensions $50 ~cm \times 70 ~cm$ as shown in Fig. The design shows 8 triangles, each of sides $26 ~cm, 17 ~cm$ and $25 ~cm$. Find the total area of the design and the remaining area of the tile.

Show Answer

Solution

Given: the dimension of the rectangular tile are $50 ~cm \times 70 ~cm$.

So, area of the rectangular tile $=50 ~cm \times 70 ~cm=3500 ~cm^{2}$.

See the given figure in the question, the sides of the triangle $A B C$ be:

$a=25 ~cm, b=17 ~cm$, and $c=26 ~cm$

Since, semi-parameter(s) of triangle be:

$ \begin{aligned} s & =\dfrac{a+b+c}{2} \\ & =\dfrac{25+17+26}{2} \\ & =\dfrac{68}{2} \\ & =34 \end{aligned} $

So, area of triangle $ABC=\sqrt{s(s-a)(s-b)(s-c)}$

Since, Total area of eight triangle $=8 \times$ Area of triangle $ABC$

$ \begin{aligned} & =204 \times 8 \\ & =1632 ~cm^{2} \end{aligned} $

The area of the design will be equal to the area of eight triangle that is $1632 ~cm^{2}$.

Now, remaining area of the tile $=$ Area of the rectangle - Area of the design $=$ $3500 ~cm^{2}-1632 ~cm^{2}=1868 ~cm^{2}$

Therefore, total area of the design is $1632 ~cm^{2}$ and the remaining area of the tile is $1868 ~cm^{2}$.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ