Relations and Functions

Short Answer Type Questions

1. If $A=\lbrace-1,2,3\rbrace$ and $B=\lbrace1,3\rbrace$, then determine

(i) $A \times B$

(ii) $B \times A$

(iii) $B \times B$

(iv) $A \times A$

Show Answer

Solution

$A=\lbrace-1,2,3\rbrace$ and $B=\lbrace1,3\rbrace$

(i) $A \times B=\lbrace(-1,1),(-1,3),(2,1),(2,3),(3,1),(3,3) \rbrace$

(ii) $B \times A=\lbrace(1,-1),(1,2),(1,3),(3,-1),(3,2),(3,3)\rbrace$

(iii) $B \times B=\lbrace(1,1),(1,3),(3,1),(3,3)\rbrace$

(iv)$A \times A= \lbrace(-1,-1),(-1,2),(-1,3),(2,-1),(2,2),(2,3),(3,-1),(3,2),(3,3)\rbrace$

2. If $P=\lbrace x: x<3, x \in N\rbrace, \quad Q=\lbrace x: x \leq 2, x \in W\rbrace$, then find $(P \cup Q) \times(P \cap Q)$, where $W$ is the set of whole numbers.

Show Answer

Solution

We have,

and

$ \begin{aligned} P & =\lbrace x: x<3, x \in N\rbrace=\lbrace1,2\rbrace \\ Q & =\lbrace x: x \leq 2, x \in W\rbrace=\lbrace0,1,2\rbrace \\ P \cup Q & =\lbrace0,1,2\rbrace \text { and } P \cap Q=\lbrace1,2\rbrace \\ (P \cup Q) \times(P \cap Q) & =\lbrace0,1,2\rbrace \times\lbrace1,2\rbrace \\ & =\lbrace(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)\rbrace \end{aligned} $

$ \therefore \quad P \cup Q=\lbrace0,1,2\rbrace \text { and } P \cap Q=\lbrace1,2\rbrace $

3. If $A=\lbrace x: x \in W, x<2\rbrace, B=\lbrace x: x \in N, 1<x<5\rbrace$ and $C=\lbrace3,5\rbrace$, then find

(i) $A \times(B \cap C)$

(ii) $A \times(B \cup C)$

Show Answer

Solution

We have,

and

$ \begin{aligned} A & =\lbrace x: x \in W, x<2\rbrace=\lbrace0,1\rbrace \\ B & =\lbrace x: x \in N, 1<x<5\rbrace \\ & =\lbrace2,3,4\rbrace \text { and } C=\lbrace3,5\rbrace \end{aligned} $

(i) $:$

$B \cap C=\lbrace3\rbrace$

$\therefore \quad A \times(B \cap C)=\lbrace0,1\rbrace \times\lbrace3\rbrace=\lbrace(0,3),(1,3)\rbrace$

(ii) $\because(B \cup C)= \lbrace 2,3,4,5\rbrace$

$ \begin{aligned} \therefore \quad A \times(B \cup C) & = \lbrace 0,1\rbrace \times \lbrace 2,3,4,5 \rbrace \\ & =\lbrace(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\rbrace \end{aligned} $

4. In each of the following cases, find $a$ and $b$.

(i) $(2 a+b, a-b)=(8,3)$

(ii) $\begin{pmatrix} \frac{a}{4}, a-2 b\end{pmatrix}=(0,6+b) $

Show Answer

Solution

(i) We have, $(2a+b, a-b)=(8,3)$

$ \Rightarrow \quad 2 a+b=8 \text { and } a-b=3 $

[since, two ordered pairs are equal, if their corresponding first and second elements are equal]

On substituting, $b=a-3$ in $2 a+b=8$, we get

$ 2a+a-3 =8 \Rightarrow 3 a-3=8 \\ 3a =11 \Rightarrow a=\frac{11}{3} $

$ \text {Again, substituting a} = \frac{11}{3}\text{in b=a-3, we get}$

$b=\frac{11}{3}=\frac{11-9}{3}=\frac{2}{3} $

$a=\frac{11}{3} \text{and b}=\frac{2}{3}$

(ii) We have, $\quad \begin{pmatrix} \frac{a}{4}, a-2b\end{pmatrix}=(0,6+b) $

$ \begin{matrix} \Rightarrow & \frac{a}{4} & =0 \Rightarrow a=0 \\ \text { and } & a-2 b & =6+b \\ \Rightarrow & 0-2 b & =6+b \\ \Rightarrow & -3 b & =6 \\ \therefore & b & =-2 \\ \therefore & a & =0, b=-2 \end{matrix} $

5. $ A=\lbrace 1,2,3,4,5\rbrace, S=\lbrace(x, y): x \in A, y \in A\rbrace$, then find the ordered which satisfy the conditions given below.

(i) $x+y=5$

(ii) $x+y<5$

(iii) $x+y>8$

Show Answer

Solution

We have, $A=\lbrace 1,2,3,4,5\rbrace$ and $S=\lbrace(x, y): x \in A, y \in A \rbrace$

(i) The set of ordered pairs satisfying $x+y=5$ is,

$\lbrace (1,4),(2,3),(3,2),(4,1)\rbrace$.

(ii) The set of ordered pairs satisfying $x+y<5$ is $\lbrace(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\rbrace$.

(iii) The set of ordered pairs satisfying $x+y>8$ is $\lbrace(4,5),(5,4),(5,5)\rbrace$.

6. If $R=\lbrace(x, y): x, y \in W, x^{2}+y^{2}=25\rbrace$, then find the domain and range of $R$.

Show Answer

Thinking Process

First, write the relation in Roaster form, then find the domain and range of $R$.

Solution

We have,

$ \begin{aligned} R & =\lbrace(x, y): x, y \in W, x^{2}+y^{2}=25\rbrace \\ & =\lbrace(0,5),(3,4),(4,3),(5,0)\rbrace \end{aligned} $

Range of Domain of $R=$ Set of first element of ordered pairs in $R$

$ =\lbrace 0,3,4,5 \rbrace $

$R=$ Set of second element of ordered pairs in $R$ $=\lbrace 5,4,3,0 \rbrace$,

7. If $R_1=\lbrace(x, y) \mid y=2 x+7$, where $x \in R$ and $-5 \leq x \leq 5\rbrace$ is a relation. Then, find the domain and range of $R_1$.

Show Answer

Solution

We have,

$ \begin{aligned} R_1 & =\lbrace(x, y) \mid y=2 x+7, \text { where } x \in R \text { and }-5 \leq x \leq 5\rbrace \\ \text { Domain of } R_1 & =\lbrace-5 \leq x \leq 5, x \in R\rbrace \\ & =[-5,5] \\ y & =2 x+7 \\ y & =2(-5)+7=-3 \\ y & =2(5)+7=17 \\ \text { Range of } R_1 & =\lbrace-3 \leq y \leq 17, y \in R\rbrace \\ & =[-3,17] \end{aligned} $

$ \begin{aligned} & \text { When } x=-5 \text {, then } \\ & \text { When } x=5 \text {, then } \\ & \therefore \quad \text { Range of } R_1=\lbrace-3 \leq y \leq 17, y \in R\rbrace \end{aligned} $

8. If $R_2=\lbrace x, y \mid x$ and $y$ are integers and $x^{2}+y^{2}=64\rbrace$ is a relation, then find the value of $R_2$.

Show Answer

Solution

We have, $R_2=\lbrace(x, y)\rbrace x$ and $y$ are integers and $.x^{2}+y^{2}=64\rbrace$

Since, 64 is the sum of squares of 0 and $\pm 8$.

When $x=0$, then $y^{2}=64 \Rightarrow y= \pm 8$

$x=8$, then $y^{2}=64-8^{2} \Rightarrow 64-64=0$

$x=-8$, then $y^{2}=64-(-8)^{2}=64-64=0$

$\therefore \quad R_2=(0,8),(0,-8),(8,0),(-8,0)\rbrace$

9. If $R_3=\lbrace(x,|x|) \mid x$ is a real number $\rbrace$ is a relation, then find domain and range of $R_3$.

Show Answer

Solution

We have

$ \begin{aligned} & R_3=\lbrace (x,|x|) \mid x \text { is real number }\rbrace \\ & R_3=R \end{aligned} $

Clearly, domain of

Since, image of any real number under $R_3$ is positive real number or zero.

$ \therefore \quad \text { Range of } R_3=R^{+} \cup0\rbrace \text { or }(0, \infty) $

10. Is the given relation a function? Give reason for your answer.

(i) $h=\lbrace(4,6),(3,9),(-11,6),(3,11)\rbrace$

(ii) $f=\lbrace(x, x) \mid x$ is a real number $\rbrace$

(iii) $g=\lbrace (x, \frac{1}{x} )\quad x$ $\text{is a positive integer }\rbrace$

(iv) $s=\lbrace(x, x^{2}) \mid x.$ is a positive integer $\rbrace$

(v) $t=\lbrace(x, 3) \mid x$ is a real number $\rbrace$

Show Answer

Solution

(i) We have, $h=\lbrace(4,6),(3,9),(-11,6),(3,11)\rbrace$.

Since, 3 has two images 9 and 11. So, it is not a function.

(ii) We have, $f=\lbrace(x, x) \mid x$ is a real number.

We observe that, every element in the domain has unique image. So, it is a function.

(iii) We have, $g=x, .\lbrace \frac{1}{x} \rvert, x$ $ \text{is a positive integer} \rbrace $

For every $x$, it is a positive integer and $\frac{1}{x}$ is unique and distinct. Therefore, every element in the domain has unique image. So, it is a function.

(iv) We have, $s=\lbrace(x, x^{2}) \mid x.$ is a positive integer $\rbrace$

Since, the square of any positive integer is unique. So, every element in the domain has unique image. Hence, it is a function.

(v) We have, $t=\lbrace(x, 3) \mid x$ is a real number $\rbrace$.

Since, every element in the domain has the image 3 . So, it is a constant function.

11. If $f$ and $g$ are real functions defined by $f(x)=x^{2}+7$ and $g(x)=3 x+5$. Then, find each of the following.

(i) $f(3)+g(-5)$

(ii) $f (\frac{1}{2}) \times g(14)$

(iii) $f(-2)+g(-1)$

(iv) $f(t)-f(-2)$

(v) $\frac{f(t)-f(5)}{t-5}$, if $t \neq 5$

Show Answer

Solution

Given, $f$ and $g$ are real functions defined by $f(x)=x^{2}+7$ and $g(x)=3 x+5$.

(i) $f(3)=(3)^{2}+7=9+7=16$ and $g(-5)=3(-5)+5=-15+5=-10$

$\therefore f(3)+g(-5)=16-10=6$

(ii) $f (\frac{1}{2})=(\frac{1}2^{2})+7=\frac{1}{4}+7=\frac{29}{4}$

and $g(14)=3(14)+5=42+5=47$

$\therefore \quad f (\frac{1}{2})\times g(14)=\frac{29}{4} \times 47=\frac{1363}{4}$

(iii) $f(-2)=(-2)^{2}+7=4+7=11$ and $g(-1)=3(-1)+5=-3+5=2$

$\therefore \quad f(-2)+g(-1)=11+2=13$ (iv) $f(t)=t^{2}+7$ and $f(-2)=(-2)^{2}+7=4+7=11$

$ \therefore \quad f(t)-f(-2)=t^{2}+7-11=t^{2}-4 $

(v) $f(t)=t^{2}+7$ and $f(5)=5^{2}+7=25+7=32$

$ \begin{aligned} \therefore \quad \frac{f(t)-f(5)}{t-5}, \text { if } t \neq 5 & \\ & =\frac{t^{2}+7-32}{t-5} \\ & =\frac{t^{2}-25}{t-5}=\frac{(t-5)(t+5)}{(t-5)} \\ & =t+5 \end{aligned} $

12. Let $f$ and $g$ be real functions defined by $f(x)=2 x+1$ and $g(x)=4 x-7$.

(i) For what real numbers $x, f(x)=g(x)$ ?

(ii) For what real numbers $x, f(x)<g(x)$ ?

Show Answer

Solution

We have,

$ f(x)=2 x+1 \text { and } g(x)=4 x-7 $

$ \begin{aligned} & \text { (i) } \because \quad f(x)=g(x) \\ & \Rightarrow \quad 2 x+1=4 x-7 \Rightarrow 2 x=8 \\ & \therefore \quad x=4 \\ & \text { (ii) } \because \quad f(x)<g(x) \\ & \Rightarrow \quad 2 x+1<4 x-7 \\ & \Rightarrow \quad 2 x-4 x+1<4 x-7-4 x \\ & \Rightarrow \quad-2 x+1<-7 \\ & \Rightarrow \quad-2 x<-7-1 \\ & \Rightarrow \quad-2 x<-8 \\ & \Rightarrow \quad \frac{-2 x}{-2}>\frac{-8}{-2} \\ & \therefore \quad x>4 \end{aligned} $

13. If $f$ and $g$ are two real valued functions defined as $f(x)=2 x+1$ and $g(x)=x^{2}+1$, then find

(i) $f+g$

(ii) $f-g$

(iii) $f g$

(iv) $\frac{f}{g}$

Show Answer

Solution

We have, $f(x)=2 x+1$ and $g(x)=x^{2}+1$

(i) $(f+g)(x)=f(x)+g(x)$

$ =2 x+1+x^{2}+1=x^{2}+2 x+2 $

(ii) $(f-g)(x)=f(x)-g(x)=(2 x+1)-(x^{2}+1)$

$ =2 x+1-x^{2}-1=2 x-x^{2}=x(2-x) $

(iii) $(f g)(x)=f(x) \cdot g(x)=(2 x+1)(x^{2}+1)$

$ =2 x^{3}+2 x+x^{2}+1=2 x^{3}+x^{2}+2 x+1 $

(iv) $\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{2 x+1}{x^{2}+1}$

14. Express the following functions as set of ordered pairs and determine their range.

$ f: x \Rightarrow R, f(x)=x^{3}+1, \text{where} x=\lbrace-1,0,3,9,7\rbrace $

Show Answer

Solution

We have,

$ f: X \Rightarrow R, f(x)=x^{3}+1 $

Where

$X=\lbrace-1,0,3,9,7\rbrace$

When

$x=-1$, then $f(-1)=(-1)^{3}+1=-1+1=0$

$x=0$, then $f(0)=(0)^{3}+1=0+1=1$

$x=3$, then $f(3)=(3)^{3}+1=27+1=28$

$x=9$, then $f(9)=(9)^{3}+1=729+1=730$

$x=7$, then $f(7)=(7)^{3}+1=343+1=344$

$f=\lbrace(-1,0),(0,1),(3,28),(9,730),(7,344)\rbrace$

$\therefore \quad$ Range of $f=\lbrace0,1,28,730,344\rbrace$

15. Find the values of $x$ for which the functions $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal.

Show Answer

Solution

$ f(x)=g(x) $

$ \begin{aligned} & \Rightarrow & 3 x^{2}-1 & =3+x \\ & \Rightarrow & 3 x^{2}-x-4 & =0 \\ & \Rightarrow & 3 x^{2}-4 x+3 x-4 & =0 \\ & \Rightarrow & x(3 x-4)+1(3 x-4) & =0 \\ & \Rightarrow & (3 x-4)(x+1) & =0 \\ & \therefore & x & =-1, \frac{4}{3} \end{aligned} $

Long Answer Type Questions

16. Is $g=\lbrace(1,1),(2,3),(3,5),(4,7)$, $\rbrace$ a function, justify. If this is described by the relation, $g(x)=\alpha x+\beta$, then what values should be assigned to $\alpha$ and $\beta$ ?

Show Answer

Thinking Process

First, find the two equation by substitutions different values of $x$ and $g(x).$

Solution

We have,

$ g=\lbrace(1,1),(2,3),(3,5),(4,7)\rbrace $

Since, every element has unique image under $g$. So, $g$ is a function.

Now

$ \begin{aligned} g(x) & =\alpha x+\beta \\ g(1) & =\alpha(1)+\beta \\ 1 & =\alpha+\beta \\ g(2) & =\alpha(2)+\beta \end{aligned} $

$ \begin{aligned} & \text { When } x=1 \text {, then } \\ & \Rightarrow \end{aligned} $

$ \Rightarrow \quad 3=2 \alpha+\beta $

On solving Eqs. (i) and (ii), we get

$ \alpha=2, \beta=-1 $

17. Find the domain of each of the following functions given by

(i) $f(x)=\frac{1}{\sqrt{1-\cos x}}$

(ii) $f(x)=\frac{1}{\sqrt{x+|x|}}$

(iii) $f(x)=x|x|$

(iv) $f(x)=\frac{x^{3}-x+3}{x^{2}-1}$

(v) $f(x)=\frac{3 x}{28-x}$

Show Answer

Solution

(i) We have, $f(x)=\frac{1}{\sqrt{1-\cos x}}$

$\because$ $-1 \leq \cos x \leq 1$
$\Rightarrow$ $-1 \leq-\cos x \leq 1$
$\Rightarrow$ $0 \leq 1-\cos x \leq 2$

So, $f(x)$ is defined, if $1-\cos x \neq 0$

$\cos x \neq 1$

$x \neq 2 n \pi-\forall n \in Z$

$\therefore \quad$ Domain of $f=R-\lbrace2 n \pi: n \in Z\rbrace$

(ii) We have,

$ \begin{aligned} f(x) & =\frac{1}{\sqrt{x+|x|}} \\ +|x| & =x-x=0, x<0 \\ & =x+x=2 x, x \geq 0 \end{aligned} $

$ \because \quad x+|x|=x-x=0, x<0 $

Hence, $f(x)$ is defined, if $x>0$.

$ \therefore \quad \text { Domain of } f=R^{+} $

(iii) We have, $f(x)=x|x|$

Clearly, $f(x)$ is defined for any $x \in R$. $\therefore$ Domain of $f=R$

(iv) We have,

$ f(x)=\frac{x^{3}-x+3}{x^{2}-1} $

$f(x)$ is not defined, if

$ \begin{aligned} x^{2}-1 & =0 \\ (x-1)(x+1) & =0 \\ x & =-1,1 \\ \text { Domain of } f & =R-\lbrace-1,1\rbrace \end{aligned} $

(v) We have,

$ f(x)=\frac{3 x}{28-x} $

Clearly, $f(x)$ is defined, $\quad$ if $28-x \neq 0$

$\Rightarrow \quad x \neq 28$

$\therefore \quad$ Domain of $f=R-\lbrace28\rbrace$

18. Find the range of the following functions given by

(i) $f(x)=\frac{3}{2-x^{2}}$

(ii) $f(x)=1-|x-2|$

(iii) $f(x)=|x-3|$

(iv) $f(x)=1+3 \cos 2 x$

Show Answer

Thinking Process

First, find the value of $x$ in terms of $y$, where $y=f(x)$. Then, find the values of $y$ for which $x$ attain real values.

Solution

(i) We have,

$ \begin{aligned} f(x) & =\frac{3}{2-x^{2}} \\ y & =f(x) \\ y & =\frac{3}{2-x^{2}} \Rightarrow 2-x^{2}=\frac{3}{y} \\ x^{2} & =2-\frac{3}{y} \Rightarrow x=\sqrt{\frac{2 y-3}{y}} \end{aligned} $

Let

Then,

$\Rightarrow$

$x$ assums real values, if $2 y-3 \geq 0$ and $y>0 \Rightarrow y \geq \frac{3}{2}$

$ \therefore \quad \text { Range of } f=[\frac{3}{2}), \infty $

(ii) We know that, $\begin{vmatrix} x-2 \end{vmatrix} \geq 0 \Rightarrow $ $-\begin{vmatrix} x-2 \end{vmatrix}$

$\Rightarrow$ 1- $\begin{vmatrix} x-2 \end{vmatrix} \leq 1 \Rightarrow $ $f(x) \leq 1 $

$\therefore$ $ \text {Range of f}=(-\infty , 1) $

(iii) We know that,

$\therefore$ $ |x-3| \geq 0 \Rightarrow f(x) \geq 0 $

$ \text { Range of } f=[0, \infty) $

(iv) We know that,

$ -1 \leq \cos 2 x \leq 1 \Rightarrow-3 \leq 3 \cos 2 x \leq 3 $

$\Rightarrow 1-3 \leq 1 + 3 \cos 2 x \leq 1+3 \\ \\ \Rightarrow-2 \leq 1+3 \cos 2 x \leq 1+3 \\ -2 \leq f(x) \leq 4 \\ $ $\therefore \text { Range of } f =[-2,4] $

19. Redefine the function

$ f(x)=|x-2|+|2+x|,-3 \leq x \leq 3 $

Show Answer

Thinking Process

First find the interval in which $|x-2|$ and $|2+x|$ is defined, then find the value of $f(x)$ in that interval.

Solution

Since,

$ \text { and } $

$ \begin{aligned} Since, |x-2|=-(x-2), x<2 \\ x-2, x \geq \geq 2 \\ And|2+x|=-(2+x), x<-2 \\ (2+x), x \geq-2 \\ f(x)=|x-2|+|2+x|,-3 \leq x \leq 3 \\ = \begin{cases}-(x-2)-(2+x), \quad-3 \leq x<-2 \\ -(x-2)+2+x, \quad-2 \leq x<2 \\ x-2+2+x, \quad 2 \leq x \leq 3 \end{cases} \\ =\begin{cases}-2 x, \quad-3 \leq x<-2 \\ =-2 \leq x<2 \\ 2, \quad 2 \leq x \leq 3 \end{cases} \end{aligned} $

20. If $f(x)=\frac{x-1}{x+1}$, then show that

(i) $f (\frac{1}{x})=-f(x)$

(ii) $f-(\frac{1}{x})=\frac{-1}{f(x)}$

Show Answer

Solution

We have, $\quad f(x)=\frac{x-1}{x+1}$

(i) $f (\frac{1}{x})=\frac{\frac{1}{x}-1}{\frac{1}{x}+1}=\frac{(1-x) / x}{(1+x) / x}=\frac{1-x}{1+x}=\frac{-(x-1)}{x+1}=-f(x)$

(ii) $f(-\frac{1}{x})=\frac{-\frac{1}{x}-1}{-\frac{1}{x}+1}=\frac{(-1-x) / x}{(-1+x) / x} \Rightarrow f(-\frac{1}{x})=\frac{-(x+1)}{x-1}$

Now, $\quad \frac{-1}{f(x)}=\frac{-1}{\frac{x-1}{x+1}}=\frac{-(x+1)}{x-1}$

$\therefore \quad f(-\frac{1}{x})=-\frac{1}{f(x)}$

21. If $f(x)=\sqrt{x}$ and $g(x)=x$ be two functions defined in the domain $R^{+} \cup\lbrace0\rbrace$, then find the value of

(i) $(f+g)(x)$

(ii) $(f-g)(x)$

(iii) $(f g)(x)$

(iv) $\frac{f}{g}(x)$

Show Answer

Solution

We have, $f(x)=\sqrt{x}$ and $g(x)=x$ be two function defined in the domain $R^{+} \cup\lbrace0\rbrace$.

(i) $(f+g)(x)=f(x)+g(x)=\sqrt{x}+x$

(ii) $(f-g)(x)=f(x)-g(x)=\sqrt{x}-x$

(ii) $(f g)(x)=f(x) \cdot g(x)=\sqrt{x} \cdot x=x^{\frac{3}{2}}$

(iv) $\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$

22. Find the domain and range of the function $f(x)=\frac{1}{\sqrt{x-5}}$.

Show Answer

Solution

We have, $\quad f(x)=\frac{1}{\sqrt{x-5}}$

$f(x)$ is defined, if $x-5>0 \Rightarrow x>5$

$\therefore \quad$ Domain of $f=(5, \infty)$

Let

$f(x)=y$

$\therefore \quad y=\frac{1}{\sqrt{x-5}} \Rightarrow \sqrt{x-5}=\frac{1}{y}$

$\Rightarrow \quad x-5=\frac{1}{y^{2}}$

$\therefore \quad x=\frac{1}{y^{2}}+5$

$\because$ Hence, range of $f=R^{+} \quad x \in(5, \infty) \Rightarrow y \in R^{+}$

23. If $f(x)=y=\frac{a x-b}{c x-a}$, then prove that $f(y)=x$.

Show Answer

Solution

We have,

$ f(x)=y=\frac{a x-b}{c x-a} $

$ \begin{aligned} \therefore \quad f(y) & =\frac{a y-b}{c y-a}=\frac{a (\frac{a x-b}{c x-a})-b}{c (\frac{a x-b}{c x-a})-a} \\ & =\frac{a(a x-b)-b(c x-a)}{c(a x-b)-a(c x-a)}=\frac{a^{2} x-a b-b c x+a b}{a c x-b c-a c x+a^{2}} \\ & =\frac{a^{2} x-b c x}{a^{2}-b c}=\frac{x(a^{2}-b c)}{(a^{2}-b c)}=x \\ \therefore \quad f(y) & =x \end{aligned} $

Hence proved.

Objective Type Questions

24. Let $n(A)=m$ and $n(B)=n$. Then, the total number of non-empty relations that can be defined from $A$ to $B$ is

(a) $m^{n}$

(b) $n^{m}-1$

(c) $m n-1$

(d) $2^{m n}-1$

Show Answer

Thinking Process

First find the number of element in $A \times B$ and then find the number of relation by using $2^{m(A \times B)}-1$

Solution

(d) We have,

$ \begin{aligned} n(A) & =m \text { and } n(B)=n \\ n(A \times B) & =n(A) \cdot n(B) \\ & =m n \end{aligned} $

Total number of relation from $A$ to $B=2^{m n}-1=2^{n(A \times B)-1}-1$

  • Option (a) ( m^n ): This option represents the number of functions from set ( A ) to set ( B ), not the number of non-empty relations. A function is a specific type of relation where each element in ( A ) is related to exactly one element in ( B ). Therefore, this does not account for all possible non-empty relations.

  • Option (b) ( n^m - 1 ): This option is incorrect because it represents the number of non-empty functions from ( A ) to ( B ) minus one. Similar to option (a), it only considers functions, not all possible relations. Additionally, the formula ( n^m - 1 ) does not correctly represent the total number of non-empty relations.

  • Option (c) ( mn - 1 ): This option is incorrect because it represents the number of non-empty pairs in the Cartesian product ( A \times B ) minus one. However, the total number of non-empty relations is not simply the number of pairs minus one. The correct calculation involves considering all possible subsets of ( A \times B ) except the empty set, which is given by ( 2^{mn} - 1 ).

25. If $[x]^{2}-5[x]+6=0$, where [ $\cdot]$ denote the greatest integer function, then

(a) $x \in[3,4]$

(b) $x \in(2,3]$

(c) $x \in[2,3]$

(d) $x \in[2,4)$

Show Answer

Thinking Process

If $a$ and $b$ are two successive positive integer and $[x]=a, b$, then $x \in a, b]$

Solution

(c) We have,

$ \begin{aligned} \Rightarrow [x]^{2}-5[x]+6 =0 \\ \Rightarrow [x]^{2}-3[x]-2[x]+6 =0 \\ \Rightarrow \quad([x]-3)([x]-2)=0 \\ \Rightarrow [x] =2,3 \\ \therefore x \in[2,3] \end{aligned} $

  • Option (a) $x \in[3,4]$: This option is incorrect because if $x \in [3,4]$, then $[x]$ would be 3 or 4. However, the equation $[x]^2 - 5[x] + 6 = 0$ only has solutions for $[x] = 2$ or $[x] = 3$. Therefore, $x$ cannot be in the interval $[3,4]$ as it would imply $[x] = 4$ which does not satisfy the equation.

  • Option (b) $x \in(2,3]$: This option is incorrect because if $x \in (2,3]$, then $[x]$ would be 2 or 3. While $[x] = 2$ and $[x] = 3$ are solutions to the equation, the interval $(2,3]$ excludes $x = 2$, which is a valid solution. Therefore, the correct interval should include 2, making this option incorrect.

  • Option (d) $x \in[2,4)$: This option is incorrect because if $x \in [2,4)$, then $[x]$ would be 2 or 3. While $[x] = 2$ and $[x] = 3$ are solutions to the equation, the interval $[2,4)$ includes values of $x$ where $[x] = 4$ (specifically $x \in [3,4)$), which does not satisfy the equation. Therefore, this option is incorrect.

26. Range of $f(x)=\frac{1}{1-2 \cos x}$ is

(a) $\frac{1}{3}, 1$

(b) $-1, \frac{1}{3}$

(c) $(-\infty,-1] \cup \frac{1}{3}, \infty$

(d) $-\frac{1}{3}, 1$

Show Answer

Solution(b) We know that,

$ -1 \leq-\cos x \leq 1 $

$ \begin{matrix} \Rightarrow & -2 \leq-2 \cos x \leq 2 \\ \Rightarrow & 1-2 \leq 1-2 \cos x \leq 1+2 \\ \Rightarrow & -1 \leq 1-2 \cos x \leq 3 \\ \Rightarrow & -1 \leq \frac{1}{1-2 \cos x} \leq \frac{1}{3} \\ \Rightarrow & -1 \leq f(x) \leq \frac{1}{3} \\ \therefore & \text { Range of } f=-1, \frac{1}{3} \end{matrix} $

  • Option (a) $\frac{1}{3}, 1$ is incorrect because the range of $f(x)$ does not include 1. The correct range is $-1 \leq f(x) \leq \frac{1}{3}$, and 1 is not within this interval.

  • Option (c) $(-\infty,-1] \cup \frac{1}{3}, \infty$ is incorrect because the range of $f(x)$ is bounded between $-1$ and $\frac{1}{3}$. The function $f(x)$ does not take values outside this interval, so it cannot include $(-\infty, -1]$ or $(\frac{1}{3}, \infty)$.

  • Option (d) $-\frac{1}{3}, 1$ is incorrect because the range of $f(x)$ does not include $-\frac{1}{3}$. The correct range is $-1 \leq f(x) \leq \frac{1}{3}$, and $-\frac{1}{3}$ is not within this interval.

27. Let $f(x)=\sqrt{1+x^{2}}$, then

(a) $f(x y)=f(x) \cdot f(y)$

(b) $f(x y) \geq f(x) \cdot f(y)$

(c) $f(x y) \leq f(x) \cdot f(y)$

(d) None of these

Show Answer

Solution

(c) We have,

$ \begin{aligned} f(x) & =\sqrt{1+x^{2}} \\ f(x y) & =\sqrt{1+x^{2} y^{2}} \\ f(x) \cdot f(y) & =\sqrt{1+x^{2}} \cdot \sqrt{1+y^{2}} \\ & =\sqrt{(1+x^{2})(1+y^{2})} \\ & =\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}} \end{aligned} $

$ \begin{matrix} \because & \sqrt{1+x^{2} y^{2}} \leq \sqrt{1+x^{2}+y^{2}+x^{2} y^{2}} \\ \Rightarrow & f(x y) \leq f(x) \cdot f(y) \end{matrix} $

  • (a) $f(x y) = f(x) \cdot f(y)$ is incorrect because: [ f(x y) = \sqrt{1 + x^2 y^2} \quad \text{and} \quad f(x) \cdot f(y) = \sqrt{(1 + x^2)(1 + y^2)} = \sqrt{1 + x^2 + y^2 + x^2 y^2} ] Since (\sqrt{1 + x^2 y^2} \neq \sqrt{1 + x^2 + y^2 + x^2 y^2}), the equality does not hold.

  • (b) $f(x y) \geq f(x) \cdot f(y)$ is incorrect because: [ f(x y) = \sqrt{1 + x^2 y^2} \quad \text{and} \quad f(x) \cdot f(y) = \sqrt{(1 + x^2)(1 + y^2)} = \sqrt{1 + x^2 + y^2 + x^2 y^2} ] Since (\sqrt{1 + x^2 y^2} \leq \sqrt{1 + x^2 + y^2 + x^2 y^2}), the inequality (f(x y) \geq f(x) \cdot f(y)) does not hold.

28. Domain of $\sqrt{a^{2}-x^{2}}(a>0)$ is

(a) $(-a, a)$

(b) $[-a, a]$

(c) $[0, a]$

(d) $(-a, 0]$

Show Answer

Solution

(b) Let

$ f(x)=\sqrt{a^{2}-x^{2}} $

$f(x)$ is defined, if

$ a^{2}-x^{2} \geq 0 $

$\Rightarrow x^{2}-a^{2} \leq 0 $

$\Rightarrow (x-a)(x+a) \leq 0$

$\Rightarrow -a \leq x \leq a$

$\therefore \text {Domain of f}=[-a, a]$

  • Option (a) $(-a, a)$ is incorrect because it excludes the endpoints $-a$ and $a$. The function $\sqrt{a^2 - x^2}$ is defined at $x = -a$ and $x = a$ since $a^2 - (-a)^2 = 0$ and $a^2 - a^2 = 0$, making the square root of zero valid.

  • Option (c) $[0, a]$ is incorrect because it excludes the negative values within the interval $[-a, 0)$. The function $\sqrt{a^2 - x^2}$ is defined for all $x$ in the interval $[-a, a]$, not just the non-negative part.

  • Option (d) $(-a, 0]$ is incorrect because it excludes the positive values within the interval $(0, a]$. The function $\sqrt{a^2 - x^2}$ is defined for all $x$ in the interval $[-a, a]$, not just the non-positive part.

29. If $f(x)=a x+b$, where $a$ and $b$ are integers, $f(-1)=-5$ and $f(3)=3$, then $a$ and $b$ are equal to

(a) $a=-3, b=-1$

(b) $a=2, b=-3$

(c) $a=0, b=2$

(d) $a=2, b=3$

Show Answer

Solution

(b) We have,

$ \begin{aligned} f(x) & =a x+b \\ f(-1) & =a(-1)+b \\ -5 & =-a+b \\ \text{ and,}f(3) & =a(3)+b \\ 3 & =3 a+b \end{aligned} $

On solving Eqs. (i) and (ii), we get

$ a=2 \text { and } b=-3 $

  • Option (a) $a=-3, b=-1$:

    • If $a = -3$ and $b = -1$, then:
      • For $f(-1) = -5$: $-3(-1) + (-1) = 3 - 1 = 2 \neq -5$
      • For $f(3) = 3$: $-3(3) + (-1) = -9 - 1 = -10 \neq 3$
    • Therefore, this option does not satisfy the given conditions.
  • Option (c) $a=0, b=2$:

    • If $a = 0$ and $b = 2$, then:
      • For $f(-1) = -5$: $0(-1) + 2 = 2 \neq -5$
      • For $f(3) = 3$: $0(3) + 2 = 2 \neq 3$
    • Therefore, this option does not satisfy the given conditions.
  • Option (d) $a=2, b=3$:

    • If $a = 2$ and $b = 3$, then:
      • For $f(-1) = -5$: $2(-1) + 3 = -2 + 3 = 1 \neq -5$
      • For $f(3) = 3$: $2(3) + 3 = 6 + 3 = 9 \neq 3$
    • Therefore, this option does not satisfy the given conditions.

30. The domain of the function $f$ defined by

$ f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}} \text { is equal to } $

(a) $(-\infty,-1) \cup(1,4]$

(b) $(-\infty,-1] \cup(1,4]$

(c) $(-\infty,-1) \cup[1,4]$

(d) $(-\infty,-1) \cup[1,4)$

Show Answer

Solution

(a) We have,

$ f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}} $

$f(x)$ is defined, if

$ \begin{aligned} 4-x & \geq 0 \text { or } x^{2}-1>0 \\ x-4 & \leq 0 \text { or }(x+1)(x-1)>0 \\ x & \leq 4 \text { or } x<-1 \text { and } x>1 \end{aligned} $

$ \therefore \quad \text { Domain of } f=(-\infty,-1) \cup(1,4] $

  • Option (b) $(-\infty,-1] \cup(1,4]$ is incorrect because $x = -1$ is not in the domain of $f(x)$. At $x = -1$, the term $\frac{1}{\sqrt{x^2 - 1}}$ becomes undefined as the denominator becomes zero.

  • Option (c) $(-\infty,-1) \cup[1,4]$ is incorrect because $x = 1$ is not in the domain of $f(x)$. At $x = 1$, the term $\frac{1}{\sqrt{x^2 - 1}}$ becomes undefined as the denominator becomes zero.

  • Option (d) $(-\infty,-1) \cup[1,4)$ is incorrect because $x = 4$ is in the domain of $f(x)$. At $x = 4$, the term $\sqrt{4 - x}$ becomes zero, which is defined.

31. The domain and range of the real function $f$ defined by $f(x)=\frac{4-x}{x-4}$ is given by

(a) Domain $=R$, Range $=\lbrace-1,1\rbrace$

(b) Domain $=R-\lbrace1\rbrace$, Range $=R$

(c) Domain $=R-\lbrace4\rbrace$, Range $=\lbrace-1\rbrace$

(d) Domain $=R-\lbrace-4\rbrace$, Range $=\lbrace-1,1\rbrace$

Show Answer

Thinking Process

A function $\frac{f(x)}{g(x)}$ is defined, if $g(x) \neq 0$.

Solution

(c) We have,

$ f(x)=\frac{4-x}{x-4} $

$f(x)$ is defined, if $x-4 \neq 0$ i.e., $x \neq 4$

$\therefore \quad$ Domain of $f=R-\lbrace4\rbrace$

Let $\quad f(x)=y$

$ \therefore \quad y=\frac{4-x}{x-4} \Rightarrow x y-4 y=4-x $

$ \begin{matrix} \Rightarrow & x y+x=4+4 y \Rightarrow x(y+1)=4(1+y) \\ \therefore & x=\frac{4(1+y)}{y+1} \end{matrix} $

$x$ assumes real values, if $y+1 \neq 0$ i.e., $y=-1$.

$\therefore \quad$ Range of $f=R-\lbrace-1\rbrace$

  • (a) Domain $=R$, Range $=\lbrace-1,1\rbrace$: This is incorrect because the function $f(x)=\frac{4-x}{x-4}$ is not defined at $x=4$, so the domain cannot be all real numbers $R$. Additionally, the range is not limited to ${-1, 1}$; it includes all real numbers except $-1$.

  • (b) Domain $=R-\lbrace1\rbrace$, Range $=R$: This is incorrect because the function $f(x)=\frac{4-x}{x-4}$ is not defined at $x=4$, not $x=1$. Therefore, the domain should exclude $4$, not $1$. Also, the range is not all real numbers $R$; it excludes $-1$.

  • (d) Domain $=R-\lbrace-4\rbrace$, Range $=\lbrace-1,1\rbrace$: This is incorrect because the function $f(x)=\frac{4-x}{x-4}$ is not defined at $x=4$, not $x=-4$. Therefore, the domain should exclude $4$, not $-4$. Additionally, the range is not limited to ${-1, 1}$; it includes all real numbers except $-1$.

32. The domain and range of real function $f$ defined by

$ f(x)=\sqrt{x-1} \text { is given by } $

Solution

Show Answer

(a) Domain $=(1, \infty)$, Range $=(0, \infty)$

(b) Domain $=[1, \infty)$, Range $=(0, \infty)$

(c) Domain $=(1, \infty)$, Range $=[0, \infty)$

(d) Domain $=[1, \infty)$, Range $=[0, \infty)$

Thinking Process

  • Option (a) is incorrect because the domain should include 1, as ( f(x) = \sqrt{x-1} ) is defined for ( x = 1 ). Therefore, the domain should be ([1, \infty)) instead of ((1, \infty)).

  • Option (c) is incorrect because the domain should include 1, as ( f(x) = \sqrt{x-1} ) is defined for ( x = 1 ). Therefore, the domain should be ([1, \infty)) instead of ((1, \infty)).

  • Option (d) is incorrect because the range should be ((0, \infty)) instead of ([0, \infty)). The function ( f(x) = \sqrt{x-1} ) can take any non-negative value starting from 0, but 0 is included in the range.

Fillers

37. Let $f$ and $g$ be two real functions given by

$ \begin{aligned} & \qquad f=\lbrace(0,1),(2,0),(3,-4),(4,2),(5,1)\rbrace \\ & \text { and } g=\lbrace(1,0),(2,2),(3,-1),(4,4),(5,3)\rbrace \text {, } \\ & \text { then the domain of } f \cdot g \text { is given by………… } \\ \end{aligned} $

Show Answer

Thinking Process

First find the domain of $f$ and domain ofg. Then,

$ \text { domain of } f \cdot g=\text { domain of } f \cap \text { domain of } g \text {. } $

Solution

We have,

and

$ f=\lbrace(0,1),(2,0),(3,-4),(4,2),(5,1)\rbrace $

$g=\lbrace(1,0),(2,2),(3,-1),(4,4),(5,3)\rbrace$

$\therefore$

$ \text { Domain of } f=\lbrace0,2,3,4,5\rbrace $

and Domain of $g=\lbrace1,2,3,4,5\rbrace$

$\therefore$ Domain of $(f \cdot g)=$ Domain of $f \cap$ Domain of $g=\lbrace2,3,4,5\rbrace$

38. Let $f=\lbrace(2,4),(5,6),(8,-1),(10,-3)\rbrace$

and $g=\lbrace(2,5),(7,1),(8,4),(10,13),(11,5)\rbrace$

be two real functions. Then, match the following.

Column I Column II
(i) $f-g$ (a) $2, \frac{4}{5}, 8, \frac{-1}{4}, 10, \frac{-3}{13}$
(ii) $f+g$ (b) $\lbrace(2,20),(8,-4),(10,-39)\rbrace$
(c) $f \cdot g$ (c) $\lbrace(2,-1),(8,-5),(10,-16)\rbrace$
(d) $\frac{f}{g}$ (d) $\lbrace(2,9),(8,3),(10,-10)\rbrace$

The domain of $f-g, f+g, f \cdot g, \frac{f}{g}$ is domain of $f \cap$ domain of $g$. Then, find their images.

Show Answer

Solution

We have,

$ \begin{aligned} f=\lbrace(2,4),(5,6),(8,1),(10,-3)\rbrace \\ \text { and } \quad g=\lbrace(2,5),(7,1),(8,4),(10,13),(11,5)\rbrace \\ \text { So, } f-g, f+g, f . g, \frac{f}{g} \text { are defined in the domain (domain of } f \cap \text { domain of } g \text { ) } \\ \text { i.e., }\lbrace2,5,8,10\rbrace \cap\lbrace2,7,8,10,11\rbrace \Rightarrow\lbrace2,8,10\rbrace \\ \text { (i) }(f-g)(2)=f(2)-g(2)=4-5=-1 \\ (f-g)(8)=f(8)-g(8)=-1-4=-5 \\ (f-g)(10)=f(10)-g(10)=-3-13=-16 \\ \therefore \quad f-g=\lbrace(2,-1),(8,-5),(10,-16)\rbrace \\ (f+g)(2)=f(2)+g(2)=4+5=9 \\ (f+g)(8)=f(8)+g(8)=-1+4=3 \\ (f+g)(10)=f(10)+g(10)=-3+13=10 \\ \therefore \quad f+g=\lbrace(2,9),(8,3),(10,10)\rbrace \end{aligned} $

(iii) $(f \cdot g)(2)=f(2) \cdot g(2)=4 \times 5=20$

$ \begin{aligned} (f \cdot g)(8) & =f(8) \cdot g(8)=-1 \times 4=-4 \\ (f \cdot g)(10) & =f(10) \cdot g(10)=-3 \times 13=-39 \\ \therefore \quad f g & =\lbrace(2,20),(8,-4),(10,-39)\rbrace \end{aligned} $

(iv) $\frac{f}{g}(2)=\frac{f(2)}{g(2)}=\frac{4}{5}$

$\frac{f}{g}(8)=\frac{f(8)}{g(8)}=\frac{-1}{4}$

$\frac{f}{g}(10)=\frac{f(10)}{g(10)}=\frac{-3}{13}$

$\therefore \quad \frac{f}{g}=2, \frac{4}{5}, 8,-\frac{1}{4}, 10, \frac{-3}{13}$

Hence, the correct matches are (i) $\rightarrow$ (c), (ii) $\rightarrow$ (d), (iii) $\rightarrow$ (b), (iv) $\rightarrow$ (a).

True/False

39. The ordered pair $(5,2)$ belongs to the relation

$ R=\lbrace(x, y): y=x-5, x, y \in Z\rbrace $

Show Answer

Solution

False

We have, $\quad R=\lbrace(x, y): y=x-5, x, y \in Z\rbrace$

If $\quad x=5$, then $y=5-5=0$

Hence, (5, 2) does not belong to $R$.

40. If $P=\lbrace1,2\rbrace$, then $P \times P \times P=\lbrace(1,1,1),(2,2,2),(1,2,2),(2,1,1)\rbrace$

Show Answer

Solution

False

We have, $\quad P=\lbrace1,2\rbrace$ and $n(P)=2$

$\therefore \quad n(P \times P \times P)=n(P) \times n(P) \times n(P)=2 \times 2 \times 2=8$

But given $P \times P \times P$ has 4 elements.

41. If $A=\lbrace1,2,3\rbrace, B=\lbrace3,4\rbrace$ and $C=\lbrace4,5,6\rbrace$, then $(A \times B) \cup(A \times C)$ $=\lbrace(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3)$, $(3,4),(3,5),(3,6)\rbrace$.

Show Answer

Thinking Process

First, we find $A \times B$ and $A \times C$, then we will find $(A \times B) \cup(A \times C)$.

Solution

True $\frac {\sin\theta}{cos \theta}$ We have, $\quad A=\lbrace1,2,3\rbrace, B=\lbrace3,4\rbrace$ and $C=\lbrace4,5,6\rbrace$

$A \times B=\lbrace(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\rbrace$

$A \times C=\lbrace(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\rbrace$

$(A \times B) \cup(A \times C)=\lbrace(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5)$, $(3,6)\rbrace$

42. If $(x-2, y+5)=-(2, \frac{1}{3})$ are two equal ordered pairs, then $x=4$, $y=\frac{-14}{3}$

Show Answer

Solution

False

We have, $\quad(x-2, y+5)=(-2, \frac{1}{3})$

$\begin{aligned} \Rightarrow & x-2 =-2, y+5=\frac{1}{3} \Rightarrow x=-2+2, y=\frac{1}{3}-5 \\ \therefore & x =0, y=\frac{-14}{3}\end{aligned}$

43. If $A \times B=\lbrace(a, x),(a, y),(b, x),(b, y)\rbrace$, then $A=\lbrace a, b\rbrace$ and $B=\lbrace x, y\rbrace$.

Show Answer

Solution

True

We have, $\quad A \times B=\lbrace(a, x),(a, y),(b, x),(b, y)\rbrace$

$A=$ Set of first element of ordered pairs in $A \times B=\lbrace a, b\rbrace$

$B=$ Set of second element of ordered pairs in $A \times B=\lbrace x, y\rbrace$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ